Skip to main content
Log in

Embeddings on a boolean cube

  • Part I Computer Science
  • Published:
BIT Aims and scope Submit manuscript

Abstract

In this paper, we characterize a class of graphs which can be embedded on a boolean cube. Some of the graphs in this class are identified with the well known graphs such asmulti-dimensional mesh of trees, tree of meshes, etc. We suggest (i) an embedding of anr-dimensional mesh of trees ofn r(r+1)−rn r−1 nodes on a boolean cube of (2n)r nodes, and (ii) an embedding of a tree of meshes with 2n 2 logn+n 2 nodes on a boolean cube withn 2 exp2 (log (2 logn+1)]) nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Bhatt and I. C. F. Ipsen,How to embed trees in hypercubes, Tech. Rep. YALEU/CSD/RR-443, Department of Computer Science, Yale University, Dec. 1985.

  2. S. Bhatt, F. T. Leighton and A. Rosenberg,Optimal simulation of tree machines, in Proc. 27th Annu. IEEE Symp. Found. Comp. Sci., pp. 264–282, 1986.

  3. M. Y. Chan and F. Y. L. Chin,On embedding rectangular grids in hypercube, IEEE Trans. Computers, vol. 37, No. 10, Oct. 1988.

  4. Jia-Wei Hong, Kurt Mehlhorn and Arnold L. Rosenberg,Cost trade-offs in graph embeddings, with applications, Journal of the Association of Computing Machinery, Vol. 30, No. 4, pp. 709–728, Oct. 1983

    MATH  MathSciNet  Google Scholar 

  5. S. L. Johnson,Communication efficient basic linear algebra computation on hypercube architecture, Journal of Parallel and Distributed Computing, vol. 4 pp. 133–172, 1987.

    Article  Google Scholar 

  6. D. W. Krumme, K. N. Venkataraman, and G. Cybenko,Hypercube embedding is NP-complete, in First Hypercube Conference, M. Heath, editor, pages 148–157, SIAM, Knoxville, Tennessee, August 1985.

    Google Scholar 

  7. F. T. Leighton,New lower bound techniques for VLSI, in Proc. 22nd Annu. IEEE Symp. foundation com. sci., pp. 1–12, October 1981.

  8. F. T. Leighton,Private communication, 1989.

  9. R. Miller and Q. F. Stout,Some graph and image processing algorithms for hypercube, in Hypercube Multiprocessors 1987, Philadelphia, PA: SIAM, pp. 418–425, 1987.

    Google Scholar 

  10. R. Miller and Q. F. Stout,Efficient parallel convex hull algorithm, IEEE Trans. on Computers, Vol 37, No. 12, pp. 1605–1618, December 1988.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Miller and Q. F. Stout,Simulating essential pyramids, IEEE Trans. on Computers, Vol. 37, No. 12, pp. 1642–1647, December 1988.

    Article  MathSciNet  Google Scholar 

  12. D. Nath, S. N. Maheshwari and P. C. P. Bhatt,Efficient VLSI networks for parallel processing based on orthogonal trees, IEEE Trans. Comput., Vol. C-32, No. 6, pp. 569–581, June 1983.

    Article  Google Scholar 

  13. Y. Saad and M. H. Schultz,Topological properties of hypercubes, IEEE Trans. on Computers, Vol. 37, Number 7, pp. 867–872, 1988.

    Article  Google Scholar 

  14. David S. Scott and Joe Brandenburg,Minimal mesh embedding in binary hypercubes, IEEE Trans. Computers, vol. 37, No. 10, pp. 1284–1285, October 1988.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubair, M., Gupta, S.N. Embeddings on a boolean cube. BIT 30, 245–256 (1990). https://doi.org/10.1007/BF02017346

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017346

CR categories

Keywords

Navigation