Abstract
1. If κ is a weakly compact cardinal then (κ κ +)→(κ κ). 2. If κ is measurable andU a normal ultrafilter then (κ κ +)→(U κ).
Similar content being viewed by others
Literatur
Choodnovsky, G.: Comb. Properties of Compact Card., Infin. & Fin. Sets. Keszthely 1973.
Choodnovsky, G., Wolfsdorf, K.: A theorem on polarised partition relation for singular cardinals (to appear in BMSF).
Drake, F.: Set theory. Amsterdam: North-Holland 1974.
Erdös, Hajnal, Rado: Partition relations for card. numb. Acta Math. Hung., 1965.
Hajnal, A.: On some combinatorial problems involving large cardinals. Fund. Math.69, 39–53 (1970).
Rowbottom, F.: Some strong axioms of infinity incompatible with the axiom of constructibility. Ann. Math. Logic3, 1–44 (1971).
Author information
Authors and Affiliations
Additional information
Diese Arbeit ist ein Teil der Dissertation des Autors. Teilweise gefördert von der DFG.
Rights and permissions
About this article
Cite this article
Wolfsdorf, K. Der Beweis eines Satzes von G. Choodnovsky. Arch math Logik 20, 161–171 (1980). https://doi.org/10.1007/BF02021135
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02021135