Skip to main content
Log in

Der Beweis eines Satzes von G. Choodnovsky

  • Published:
Archiv für mathematische Logik und Grundlagenforschung Aims and scope Submit manuscript

Abstract

1. If κ is a weakly compact cardinal then (κ κ +)→(κ κ). 2. If κ is measurable andU a normal ultrafilter then (κ κ +)→(U κ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Choodnovsky, G.: Comb. Properties of Compact Card., Infin. & Fin. Sets. Keszthely 1973.

  2. Choodnovsky, G., Wolfsdorf, K.: A theorem on polarised partition relation for singular cardinals (to appear in BMSF).

  3. Drake, F.: Set theory. Amsterdam: North-Holland 1974.

    Google Scholar 

  4. Erdös, Hajnal, Rado: Partition relations for card. numb. Acta Math. Hung., 1965.

  5. Hajnal, A.: On some combinatorial problems involving large cardinals. Fund. Math.69, 39–53 (1970).

    Google Scholar 

  6. Rowbottom, F.: Some strong axioms of infinity incompatible with the axiom of constructibility. Ann. Math. Logic3, 1–44 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Diese Arbeit ist ein Teil der Dissertation des Autors. Teilweise gefördert von der DFG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfsdorf, K. Der Beweis eines Satzes von G. Choodnovsky. Arch math Logik 20, 161–171 (1980). https://doi.org/10.1007/BF02021135

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02021135