Skip to main content
Log in

Global optimization for molecular conformation problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A primal-relaxed dual global optimization algorithm is presented along with an extensive review for finding the global minimum energy configurations of microclusters composed by particles interacting with any type of two-body central forces. First, the original nonconvex expression for the total potential energy is transformed to the difference of two convex functions (DC transformation) via an eigenvalue analysis performed for each pair potential that constitutes the total potential energy function. Then, a decomposition strategy based on the GOP algorithm [1–4] is designed to provide tight upper and lower bounds on the global minimum through the solutions of a sequence of relaxed dual subproblems. A number of theoretical results are included which expedite the computational effort by exploiting the special mathematical structure of the problem. The proposed approach attainsε-convergence to the global minimum in a finite number of iterations. Based on this procedure global optimum solutions are generated for small Lennard-Jones and Morse (a=3) microclustersn≤7. For larger clusters (8≤N≤24 for Lennard-Jones and 8≤N≤30 for Morse), tight lower and upper bounds on the global solution are provided which serve as excellent initial points for local optimization approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Floudas and V. Visweswaran, Comp. Chem. Eng. 14(1990)1397.

    Article  Google Scholar 

  2. V. Visweswaran and C.A. Floudas, Comp. Chem. Eng. 14(1990)1419.

    Article  Google Scholar 

  3. V. Visweswaran and C.A. Floudas,Proc. Process Systems Engineering, PSE '91 (1991) p. I.6.1.

  4. C.A. Floudas and V. Visweswaran, J. Optim. Theory Appl. (1992).

  5. M.R. Hoare, Adv. Chem. Phys. 40(1979)49.

    Google Scholar 

  6. M.D. Morse and R.E. Smalley, Phys. Chem. 88(1984)228.

    Google Scholar 

  7. R.S. Bowles, J.J. Kolstad, J.M. Calo and R.P. Andres, Surf. Sci. 106(1981)117.

    Article  Google Scholar 

  8. E. Kay, Z. Phys. D 3(1986)251; J. Mol. Struct. 157(1987)43.

    Google Scholar 

  9. A. Brenner, D.H. Farrar and R.J. Goudsmit,Metal Clusters (Wiley, New York, 1986).

    Google Scholar 

  10. H. Poppa, D. Moorhead and K. Heinemann, Thin Solid Films 128(1985)251.

    Article  Google Scholar 

  11. M.A. Duncan and D.H. Rouvray, Microclusters, Sci. Amer. (December 1989).

  12. R. Pool, Science 24(1990)1186.

    Google Scholar 

  13. T.L. Beck, J. Jellinek and R.S. Berry, J. Chem. Phys. 87(1987)545.

    Article  Google Scholar 

  14. R.S. Berry, Sci. Amer. (1990).

  15. M.R. Hoare and J. McInnes, Adv. Phys. 32(1983)791.

    Google Scholar 

  16. L.T. Wille and J. Vennik, J. Phys. A 18(1985)L419.

  17. M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).

    Google Scholar 

  18. A.H. Boerdijk, Philips Res. Rep. 7(1953)303.

    Google Scholar 

  19. H.S.M. Coxeter,Introduction to Geometry (Wiley, New York, 1961) chap. 22.

    Google Scholar 

  20. L. Fejes-Toth,Regular Figures (Macmillan, New York, 1954) chap. 9.

    Google Scholar 

  21. J.H. Conway and N.J.A. Sloane,Sphere Packings, Lattices and Groups (Springer, 1988).

  22. M.R. Hoare and P. Pal, Nature Phys. Sci. 230(1971)5.

    Google Scholar 

  23. M.R. Hoare and P. Pal, Adv. Phys. 20(1971)161.

    Google Scholar 

  24. M.R. Hoare and P. Pal, J. Cryst. Growth 17(1972)77.

    Article  Google Scholar 

  25. M.R. Hoare and J. McInnes, Faraday Discussions Chem. Soc. 61(1972)12.

    Article  Google Scholar 

  26. L.T. Wille, Nature 34(1986)46.

    Article  Google Scholar 

  27. L. Piela, J. Kostrowicki and H.A. Scheraga, J. Phys. Chem. 93(1989)3339.

    Article  Google Scholar 

  28. F.H. Stillinger and T.A. Weber, Adv. Chem. Phys. 52(1988)1429.

    Google Scholar 

  29. D. Beeman, J. Comp. Phys. 20(1976)130.

    Article  Google Scholar 

  30. D.J. Evans and G.P. Morris, Comput. Phys. Rep. 1(1984)297.

    Article  Google Scholar 

  31. L.D. Heidi, J. Jellinek and R.S. Berry, J. Chem. Phys. 86(1987)6456.

    Article  Google Scholar 

  32. J. Jellinek, T.L. Beck and R.S. Berry, J. Chem. Phys. 84(1986)2783.

    Article  Google Scholar 

  33. J.D. Honeycutt and H.C. Andersen, J. Phys. Chem. 91(1987)4950.

    Article  Google Scholar 

  34. E.E. Polymeropoulos and J. Brickmann, Chem. Phys. Lett. 96(1983)73.

    Article  Google Scholar 

  35. E.E. Polymeropoulos and J. Brickmann, Surf. Sci. 156(1985)563.

    Article  Google Scholar 

  36. I.L. Garzon, X.P. Long, R. Kawai and J.H. Weare, Chem. Phys. Lett. 158(1989)525.

    Article  Google Scholar 

  37. I.L. Garzon, X.P. Long, R. Kawai and J.H. Weare, Z. Phys. D — Atoms, Molecules and Clusters 12(1989)81.

    Google Scholar 

  38. S. Erkoc and S. Katircioglu, Chem. Phys. Lett. 147(1988)476.

    Article  Google Scholar 

  39. N. Metropolis, A.W. Rosenbluth, A.H. Teller and E. Telleri, J. Chem. Phys. 21(1953)1087.

    Article  Google Scholar 

  40. N.H. Tsai and F.F. Abraham, Surf. Sci. 77(1978)465.

    Article  Google Scholar 

  41. N. Quirke and P. Sheng, Chem. Phys. Lett. 110(1984)63.

    Article  Google Scholar 

  42. H.U. Bohmer and S.D. Peyerimhoff, Stability and structure of singly-charged argon clusters Ag + n ,n=3–27. A Monte Carlo simulation, Z. Phys. D — Atoms, Molecules and Clusters 11(1989)239.

    Google Scholar 

  43. D.L. Freeman and J.D. Doll, J. Chem. Phys. 82(1984)462.

    Article  Google Scholar 

  44. C.Y. Yang and G. Bambakidis,Transition Metals, Institute of Physics Conf. Series 39(1977).

  45. T. Halicioglu and P.J. White, J. Vac. Sci. Technol. 17(1980)1213.

    Article  Google Scholar 

  46. S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Science 220(1983)671.

    Google Scholar 

  47. D. Vanderbild and S.G. Louie, J. Comput. Phys. 56(1984)259.

    Article  Google Scholar 

  48. L.T. Wille, Chem. Phys. Lett. 133(1987)405.

    Article  Google Scholar 

  49. P. Ballone and P. Milani, Phys. Rev. 42(1990)3905.

    Google Scholar 

  50. D. Hohl, R.O. Jones, R. Car and M. Parrinello, J. Chem Phys 89(1988)6823.

    Article  Google Scholar 

  51. I.M. Navon, F.B. Brown and H. Robertson, Comp. Chem. 14(1990)305.

    Article  Google Scholar 

  52. D.G. Vlachos, L.D. Schmidt and R. Aris, J. Chem. Phys. 96(1992)6880.

    Article  Google Scholar 

  53. D.G. Vlachos, L.D. Schmidt and R. Aris, J. Chem. Phys. 96(1992)6891.

    Article  Google Scholar 

  54. D. Shalloway, J. Global Optim. 3(1992)281.

    MathSciNet  Google Scholar 

  55. C.A. Floudas and P.M. Pardalos,Recent Advances in Global Optimization, (Princeton University Press, 1991).

  56. J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, J. Chem. Phys. 78(1983)5067.

    Article  Google Scholar 

  57. J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, Surf. Sci. 156(1985)370.

    Article  Google Scholar 

  58. J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, J. Chem. Phys. 84(1986)3491.

    Article  Google Scholar 

  59. J.A. Northby, J. Chem. Phys. 87(1987)6166.

    Article  Google Scholar 

  60. G.L. Xue, Army High Performance Computing Research Center Preprint, University of Minnesota (1992).

  61. R.S. Maier, J.B. Rosen and G.L. Xue, Army High Performance Computing Research Center Preprint 92-031, University of Minnesota (1992).

  62. G.L. Xue, Army High Performance Computing Research Center Preprint 92-047, University of Minnesota (1992).

  63. B.A. Murtagh and M.A. Saunders,MINOS 5.0 User's Guide (Systems Optimization Laboratory, Department of Operations Research, Stanford University, 1987).

  64. C.D. Maranas and C.A. Floudas, J. Chem. Phys. 97(1992)10.

    Article  Google Scholar 

  65. D.G. Luenberger,Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984).

    Google Scholar 

  66. A.M. Geoffrion, Optim. Theory Appl. 10(1972)237.

    Article  Google Scholar 

  67. G.L. Xue, R.S. Maier and J.B. Rosen, Army High Performance Computing Research Center Preprint 91-127, University of Minnesota (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maranas, C.D., Floudas, C.A. Global optimization for molecular conformation problems. Ann Oper Res 42, 85–117 (1993). https://doi.org/10.1007/BF02023173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02023173

Keywords

Navigation