Abstract
The purpose of this paper is to compare and contrast the modeling capabilities of seven algebraic modeling languages (ML) available today, namely, AMPL, GAMS, LINGO, LPL, MPL, PC-PROG and XPRESS-LP. In general, these MLs do an excellent job of providing an interface with which the modeler can specify an algebraically formatted linear program (LP). That is, each ML provides a substantial improvement in time and convenience over the matrix generator/report writers of the last few decades. Further, each of the MLs provides: (1) significant flexibility in model specification, instantiation and modification, (2) effective and efficient conversion from algebraic to solver format, and (3) an understandable and, for the most part, self-documenting model representation. In addition, each of the MLs is constantly being updated and upgraded to provide additional capabilities sought by practitioners and users. However, as shown in the fifteen tables provided in the body of this paper, each ML has its own set of competitive advantages. For example, the most integrated environments (i.e. those integrating the modeling language with a full-screen editor, data import capabilities and a solver) are provided by LINGO and PC-PROG. The most user-friendly interfaces are provided by MPL and PC-PROG, both of which provide window-based interfaces to create models and pop-up windows to display error messages; MPL also uses pull-down menus to specify various operations, whereas PC-PROG uses function keys for operational control. Package costs are led by a current (March, 1991) introductory offer from LINGO. Modeling effectiveness, especially with respect to flexibility in specifying arithmetic statements, is led by GAMS and LPL. Model compactness, as measured by the number of lines required to specify a model, is led by AMPL, LPL, MPL and PC-PROG; LPL, MPL and PC-PROG also provide context sensitive editors which automatically position the cursor where the error was detected. And finally, the most comprehensive user documentation is provided by GAMS, whereas GAMS, LINGO and LPL provide extensive libraries of sample models for those users who “learn by example”.
Similar content being viewed by others
References
D. Baldwin, Conceptualizing models as views: Advantages, problems and opportunities, Presented at the ORSA/TIMS Joint National Meeting, Anaheim, CA (1991).
Bonner and Moore Management Science,GAMMA 2000 User's Manual, Version 1.0, Houston, TX (1988).
R.W. Brown, W.D. Northup and J.F. Shapiro, LOGS: A modeling and optimization system for business planning, in:Computer Assisted Decision Making, ed. G. Mitra (North-Holland, 1986) pp. 227–258.
Chesapeake Decision Sciences,MIMI/LP User Manual, New Providence, NJ (1988).
J.W. Chinneck, Formulating processing network models: Viability theory, Naval. Res. Logist. 37(1990)245–261.
R. Fourer, Modeling languages versus matrix generators, ACM Trans. Math. Software 9(1983)143–183.
A.M. Geoffrion, An introduction to structural modeling, Manag. Sci. 33(1987)547–588.
A.M. Geoffrion, The formal aspects of structured modeling, Oper. Res. 37(1989)30–51.
A.M. Geoffrion, The SML language for structured modeling: Levels 1 and 2, Oper. Res. 40(1992)38–57.
A.M. Geoffrion, The SML language for structured modeling: Levels 3 and 4, Oper. Res. 40(1992).
F. Glover, D. Klingman and C. McMillan, The NETFORM concept: A more effective model form and solution procedure for large scale nonlinear problems, Annual Proc. ACM (1977) pp. 283–289.
F. Glover, D. Klingman and N. Phillips, NETFORM modeling and applications, Interfaces 20(1990)7–27.
H.J. Greenberg, A functional description of ANALYZE: A computer-assisted analysis system for linear programming models, ACM Trans. Math. Software 9(1983)18–56.
H.J. Greenberg, A natural language discourse model to explain linear programming models and solutions, Dec. Support Syst. 3(1987)333–342.
H.J. Greenberg, MODLER: Modeling by object-driven linear elemental relations, Technical Report, Mathematics Department, University of Colorado at Denver, Denver, CO (1991).
H.J. Greenberg, A bibliography for the development of an intelligent mathematical programming system, Technical Report, Mathematics Department, University of Colorado at Denver, Denver, CO (1992).
H.J. Greenberg and F.H. Murphy, A comparison of mathematical programming modeling systems, Ann. Oper. Res. 38(1992)177–238.
Haverly Systems,MaGen Reference Manual, Denville, NJ (1977).
C.V. Jones, An introduction to graph based modeling systems, Part 1: Overview, ORSA J. Comput. 2(1990)136–151.
C.V. Jones, An introduction to graph based modeling systems, Part II: Graph grammars and the implementation, ORSA J. Comput. 3(1991)180–206.
D.A. Kendrick, A graphical interface for production and transportation system modeling: PTS CER Working Paper 90-08, Department of Economics, Center for Economic Research, University of Texas, Austin, TX (1990).
Ketron Management Science Systems,DATAFORM Mathematical Programming Data Management Systems: User's Manual (Ketron, Inc., Arlington, VA, 1970).
R. Krishnan, A logic based approach to model construction, SUPA Technical Report, Carnegie-Mellon University, Pittsburgh, PA (1988).
P.C. Ma, F.H. Murphy and E.A. Stohr, A graphics interface for linear programming, Commun. ACM 33(1989)996–1012.
MathPro, Inc.,MathPro Usage Guide: Introduction and Reference, Washington, DC (1989).
R.D. McBride, NETSYS — A generalized network modeling system, University of Southern California, unpublished manuscript (1988).
F.H. Murphy and E.A. Stohr, An intelligent system for formulating linear programs, Dec. Support Syst. 3(1986).
L. Schrage,User's Manual for LINDO (Scientific Press, Palo Alto, CA, 1981).
D.M. Steiger, R. Sharda and B. LeClaire, Graphical interfaces for network modeling: A model management system perspective, ORSA J. Comput. (1992), forthcoming.
J.S. Welch, PAM — A practitioner's approach to modeling, Manag. Sci. 33(1987)610–625.
S.A. Zenios, Integrating network optimization capabilities into a high level modeling language, Technical Report, University of Pennsylvania, Philadelphia, PA (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Steiger, D., Sharda, R. LP modeling languages for personal computers: A comparison. Ann Oper Res 43, 195–216 (1993). https://doi.org/10.1007/BF02025017
Issue Date:
DOI: https://doi.org/10.1007/BF02025017