Skip to main content
Log in

On the use of dense matrix techniques within sparse simplex

  • Sparse Simplex Methods
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we discuss some instances where dense matrix techniques can be utilized within a sparse simplex linear programming solver. The main emphasis is on the use of the Schur complement matrix as a part of the basis matrix representation. This approach enables to represent the basis matrix as an easily invertible sparse matrix and one or more dense Schur complement matrices. We describe our variant of this method which uses updating of the QR factorization of the Schur complement matrix. We also discuss some implementation issues of the LP software package which is based on this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Aittoniemi, Basis representation in large-scale linear programming software,Operations Research Proceedings 1988 (Springer, Berlin-Heidelberg-New York, 1989).

    Google Scholar 

  2. M. Benichou, J.M. Gauthier, G. Hentges and G. Ribière, The efficient solution of large-scale linear programming problems-Some algorithmic techniques and computational results, Math. Progr. 13(1977)280–322.

    Google Scholar 

  3. J. Bischop and A. Meeraus, Matrix augmentation and partitioning in the updating of the basis inverse, Math. Progr. 13(1977)241–254.

    Google Scholar 

  4. T.F. Coleman,Large Sparse Numerical Optimization (Springer, Berlin-Heidelberg-Tokyo, 1984).

    Google Scholar 

  5. R.W. Cottle, Manifestations of the Schur complement, Lin. Alg. Appl. 8(1974)189–211.

    Google Scholar 

  6. G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, 1963).

    Google Scholar 

  7. I.S. Duff, A.M. Erisman and J.K. Reid,Direct Methods for Sparse Matrices (Clarendon Press, Oxford, 1989).

    Google Scholar 

  8. R. Fletcher and F.P.J. Matthews, Stable modification of explicit LU factors for simplex updates, Math. Progr. 30(1984)267–284.

    Google Scholar 

  9. J.J.H Forrest and J.A. Tomlin, Updated triangular factors of the basis to maintain sparsity in the product form simplex method, Math. Progr. 2(1972)263–278.

    Google Scholar 

  10. P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, A practical anti-cycling procedure for linearly constrained optimization, Math. Progr. 45(1989)437–474.

    Google Scholar 

  11. G.H. Golub and C.F. Van Loan,Matrix Computations (Oxford Academic, London, 1986).

    Google Scholar 

  12. J. Gondzio, On exploiting original problem data in the inverse representation of linear programming bases, Report ZTSW-1-A1214/90, System Research Institute, Polish Academy of Sciences (1990), to appear in ORSA J. Comput.

  13. J. Gondzio, Stable algorithm for updating dense LU factorization after row or column exchange and row and column addition or deletion, Optimization 23(1992)7–26.

    Google Scholar 

  14. F. Gustavson, Finding the block lower triangular form of a sparse matrix, in:Sparse Matrix Computations, eds. J.R. Bunch and D.J. Rose (Academic Press, New York, 1976) pp. 275–289.

    Google Scholar 

  15. E. Hellerman and D. Rarick, Reinversion with the preassigned pivot procedure, Math. Progr. 1(1971)195–216.

    Google Scholar 

  16. R.V. Helgason and J.L. Kennington, Spike swapping in basis reinversion, Naval Res. Log. Quarterly 27(1980)697–701.

    Google Scholar 

  17. R.V. Helgason and J.L. Kennington, A note on splitting the bump in an elimination factorization, Naval Res. Log. Quarterly 29(1982))169–178.

    Google Scholar 

  18. J.J. Judice, G. Mitra and M. Tamiz, A program to reorder and solve sparse unsymmetric linear systems using an envelope method, Technical Report/04/87, Dept. of Math. & Stats, Brunel University, UK.

  19. I.J. Lustig, An analysis of an available set of linear programming test problems, Comp. Oper. Res. 16(1989)173–184.

    Google Scholar 

  20. G. Mitra and M. Tamiz, Alternative methods for representing the inverse of linear programming basis matrices,13th Int. Symp. on Mathematical Programming, Tokyo (1988).

  21. U.H. Suhl and L.M. Suhl, Computing sparse LU factorization for large-scale linear programming bases, ORSA J. Comput. 2(1990)325–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Barle, J., Grad, J. On the use of dense matrix techniques within sparse simplex. Ann Oper Res 43, 1–14 (1993). https://doi.org/10.1007/BF02025532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02025532

Keywords

Navigation