Skip to main content
Log in

A simple recourse model for power dispatch under uncertain demand

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Optimal power dispatch under uncertainty of power demand is tackled via a stochastic programming model with simple recourse. The decision variables correspond to generation policies of a system comprising thermal units, pumped storage plants and energy contracts. The paper is a case study to test the kernel estimation method in the context of stochastic programming. Kernel estimates are used to approximate the unknown probability distribution of power demand. General stability results from stochastic programming yield the asymptotic stability of optimal solutions. Kernel estimates lead to favourable numerical properties of the recourse model (no numerical integration, the optimization problem is smooth convex and of moderate dimension). Test runs based on real-life data are reported. We compute the value of the stochastic solution for different problem instances and compare the stochastic programming solution with deterministic solutions involving adjusted demand portions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Azzalini, A note on the estimation of a distribution function and quantiles by a kernel method, Biometrika 68(1981)326–328.

    Google Scholar 

  2. R. Bacher, Power system models, objectives and constraints in optimal power flow calculations, in [14], pp. 159–198.

  3. J.R. Birge, The value of the stochastic solution in stochastic linear programs with fixed recourse, Math. Progr. 24(1982)314–325.

    Article  Google Scholar 

  4. J.R. Birge, Stochastic programming: Optimizing the uncertain, The University of Michigan, Department of Industrial and Operations Engineering, Technical Report 92–24 (1992).

  5. A. Berlinet, Hierarchies of higher order kernels, Prob. Theory Related Fields 94(1993)489–504.

    Article  Google Scholar 

  6. P.P.J. van den Bosch, Optimal static dispatch with linear, quadratic and nonlinear functions of the fuel costs, IEEE Trans. Power Apparatus Systems 104(1985)3402–3408.

    Google Scholar 

  7. J. Böttcher,Stochastische lineare Programme mit Kompensation, Mathematical Systems in Economics, Vol. 115 (Athenäum, Frankfurt am Main, 1989).

  8. D.W. Bunn and S.N. Paschentis, Development of a stochastic model for the economic dispatch of electric power, Euro. J. Oper. Res. 27(1986)179–191.

    Article  Google Scholar 

  9. G.B. Dantzig and P.W. Glynn, Parallel processors for planning under uncertainty, Ann. Oper. Res. 22(1990)1–21.

    Article  Google Scholar 

  10. L. Devroye,A Course in Density Estimation (Birkhäuser, Boston, 1987).

    Google Scholar 

  11. J. Dupačová, Applications of stochastic programming under incomplete information, J. Comp. Appl. Math. 56(1994)113–125.

    Article  Google Scholar 

  12. Y.M. Ermoliev and V.I. Norkin, Normalized convergence in stochastic optimization, Ann. Oper. Res. 30(1991)187–198.

    Google Scholar 

  13. Y.M. Ermoliev and R.J-B Wets (eds.),Numerical Techniques for Stochastic Optimization (Springer, Berlin, 1988).

    Google Scholar 

  14. K. Frauendorfer, H. Glavitsch and R. Bacher (eds.),Optimization in Planning and Operation of Electric Power Systems, Lecture Notes of a SVOR/ASRO-Tutorial, Thun, Switzerland, October 14–16, 1992 (Physica-Verlag, 1993).

  15. H. Glavitsch, Use of linear and quadratic programming techniques in exploiting the nonlinear features of the optimal power flow, in [14], pp. 199–235.

  16. N. Gröwe and W. Römisch, A stochastic programming model for optimal power dispatch: Stability and numerical treatment, in:Stochastic Optimization, ed. K. Marti, Lecture Notes in Economics and Mathematical Systems, Vol. 379 (Springer, Berlin, 1992) pp. 111–139.

    Google Scholar 

  17. J. Guddat, W. Römisch and R. Schultz, Some application of mathematical programming techniques in optimal power dispatch, Computing 49(1992)193–200.

    MathSciNet  Google Scholar 

  18. P. Kall,Stochastic Linear Programming (Springer, Berlin, 1976).

    Google Scholar 

  19. P. Kall and D. Stoyan, Solving stochastic programming problems with recourse including error bounds, Optimization 13(1982)431–447.

    Google Scholar 

  20. K. Mai and J. Polzehl, Regression-based short term prediction of electrical load for a power system, Humboldt-Universität Berlin, Fachbereich Mathematik, Preprint Nr. 91-14 (1991).

  21. B.A. Murtagh and M.A. Saunders, MINOS 5.1 User's Guide, System Optimization Laboratory, Stanford University (1987).

  22. J.L. Nazareth, Design and implementation of a stochastic programming optimizer with recourse and tenders, in [13], pp. 273–294.

    Google Scholar 

  23. J.L. Nazareth and R.J-B Wets, Algorithms for stochastic programs: The case of nonstochastic tenders, Math. Progr. Study 28(1986)1–28.

    Google Scholar 

  24. B.L.S. Prakasa Rao,Nonparametric Functional Estimation (Academic Press, New York, 1983).

    Google Scholar 

  25. A. Prékopa, Dual method for the solution of a one-stage stochastic programming problem with random rhs obeying a discrete probability distribution, Zeits. Oper. Res. 34(1990)441–461.

    Google Scholar 

  26. R.T. Rockafellar, Integral functionals, normal integrands and measurable selections, in:Nonlinear Operators and the Calculus of Variations, ed. G.P. Gossez et al., Lecture Notes in Mathematics, Vol. 543 (Springer, New York, 1976) pp. 157–207.

    Google Scholar 

  27. R.T. Rockafellar and R.J-B Wets, A dual solution procedure for quadratic stochastic programs with simple recourse, in:Numerical Methods, ed. V. Pereyra and A. Reinoza, Lecture Notes in Mathematics, Vol. 1005 (Springer, Berlin, 1983) pp. 252–265.

    Google Scholar 

  28. W. Römisch and R. Schultz, Stability analysis for stochastic programs, Ann. Oper. Res. 30(1991)241–266.

    Google Scholar 

  29. W. Römisch and R. Schultz, Lipschitz stability for stochastic programs with complete recourse, SIAM J. Optim., to appear.

  30. R.J. Serfling,Approximation Theorems of Mathematical Statistics (Wiley, New York, 1980).

    Google Scholar 

  31. G.R. Shorack and J.A. Wellner,Empirical Processes with Applications to Statistics (Wiley, New York, 1986).

    Google Scholar 

  32. H. Wacker (ed.),Applied Optimization Techniques in Energy Problems (Teubner, Stuttgart, 1985).

    Google Scholar 

  33. R.J-B Wets, Solving stochastic problems with simple recourse, Stochastics 10(1983)219–242.

    Google Scholar 

  34. R.J-B Wets, Stochastic programming, in:Handbooks in Operations Research and Management Science, Vol. 1,Optimization, ed. G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (North-Holland, Amsterdam, 1989) pp. 573–629.

    Google Scholar 

  35. B.B. Winter, Convergence rate of perturbed empirical distribution functions, J. Appl. Prob. 16(1979)163–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is supported by the Schwerpunktprogramm “Anwendungsbezogene Optimierung und Steuerung” of the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröwe, N., Römisch, W. & Schultz, R. A simple recourse model for power dispatch under uncertain demand. Ann Oper Res 59, 135–164 (1995). https://doi.org/10.1007/BF02031746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02031746

Keywords

Navigation