Skip to main content
Log in

Vector optimization and generalized Lagrangian duality

  • Multicriteria Decision Making Support
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, foundations of a new approach for solving vector optimization problems are introduced. Generalized Lagrangian duality, related for the first time with vector optimization, provides new scalarization techniques and allows for the generation of efficient solutions for problems which are not required to satisfy any convexity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Eschenauer and N. Olhoff (eds.),Optimization Methods in Structural Design (Bibliographisches Institut, Mannheim, 1983).

    Google Scholar 

  2. H. Eschenauer, J. Koski and A. Osyczka (eds.),Multicriteria Design Optimization — Procedures and Applications (Springer, Berlin, 1990).

    Google Scholar 

  3. A. Osyczka,Multicriterion Optimization in Engineering with Fortran Programs (Ellis Horwood, Chichester, 1984).

    Google Scholar 

  4. S. Jendo, Multiobjective optimization, in:Structural Optimization, ed. M. Save and W. Prager (Plenum Press, New York, 1990).

    Google Scholar 

  5. D. Tabek, A.A. Schy, D.P. Giesy and K.G. Johnson, Application of multiobjective optimization in aircraft control systems design, Automatica 15(1979)595–600.

    Article  Google Scholar 

  6. Ku Chi-Fa, Some applications of multiple objective decision making, in:Operational Research '81, ed. J.P. Brans (North-Holland, Amsterdam, 1981) pp. 395–404.

    Google Scholar 

  7. A.M. Geoffrion, Proper efficiency and theory of vector maximization, J. Math. Anal. Appl. 22(1968)618–630.

    Article  Google Scholar 

  8. Y.Y. Haimes and V. Chankong,Multiobjective Decision Making — Theory and Methodology (North-Holland, New York, 1983).

    Google Scholar 

  9. F. Gembicki, Performance and sensitivity optimization: a vector index approach, Ph.D. Thesis, Case Western Reserve University, Cleveland, OH (1974).

    Google Scholar 

  10. M. Zeleny, Compromise programming, in:Multiple Criteria Decision Making, ed. J.L. Cochrane and M. Zeleny (University of South Carolina Press, Columbia, SC, 1973).

    Google Scholar 

  11. H.P. Benson, Existence of efficient solutions for vector maximization problems, J. Optim. Theory Appl. 26(1978)569–580.

    Article  Google Scholar 

  12. A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in:Multiple Criteria Decision Making Theory and Applications, ed. G. Fandel and T. Gal (Springer, Berlin, 1980) pp. 468–486.

    Google Scholar 

  13. A.P. Wierzbicki, On the completeness and constructiveness of parametric characterizations to vector optimization problems, OR-Spektrum 8(1986)73–87.

    Article  Google Scholar 

  14. R.E. Steuer and E.U. Choo, An interactive weighted Tchebycheff procedure for multiple objective programming, Math. Progr. 26(1983)309–322.

    Google Scholar 

  15. I. Kaliszewski, Norm scalarization and proper efficiency in vector optimization, Foundations Contr. Eng. 11(1986)117–131.

    Google Scholar 

  16. M.M. Kostreva, T. Ordoyne and M. Wiecek, Multiple-objective programming with polynomial objectives and constraints, Eur. J. Oper. Res. 57(1992)381–394.

    Article  Google Scholar 

  17. H. Bernau, Use of exact penalty functions to determine efficient decisions, Eur. J. Oper. Res. 49(1990)348–355.

    Article  Google Scholar 

  18. P.Q. Khanh, Duality via penalty functions for nonconvex vector optimization, Paper presented at the14th Int. Symp. on Mathematical Programming, Amsterdam (1991).

  19. J.D. Roode, Generalized Lagrangian functions in mathematical programming, Ph.D. Thesis, University of Leiden, The Netherlands (1968).

    Google Scholar 

  20. M. Bellmore, H.J. Greenberg and J.J. Jarvis, Generalized penalty-function concepts in mathematical programming, Oper. Res. 18(1970)229–252.

    Article  Google Scholar 

  21. F.J. Gould, Extensions of Lagrange multipliers in nonlinear programming, SIAM J. Appl. Math. 17(1969)1280–1297.

    Article  Google Scholar 

  22. M.S. Bazaraa, Geometry and resolution of duality gaps, Naval Res. Logist. Quart. 20(1973)357–366.

    Google Scholar 

  23. H. Nakayama, H. Sayama and Y. Sawaragi, A generalized Lagrangian function and multiplier method, J. Optim. Theory Appl. 17(1975)211–227.

    Article  Google Scholar 

  24. M.L. TenHuisen, Generalized Lagrangian duality in multiple objective programming, Ph.D. Thesis, Clemson University, Clemson, SC (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TenHuisen, M.L., Wiecek, M.M. Vector optimization and generalized Lagrangian duality. Ann Oper Res 51, 15–32 (1994). https://doi.org/10.1007/BF02032078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02032078

Keywords

Navigation