Skip to main content
Log in

Nondifferentiable optimization via smooth approximation: General analytical approach

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present a method for nondifferentiable optimization, based on smoothed functionals which preserve such useful properties of the original function as convexity and continuous differentiability. We show that smoothed functionals are convenient for implementation on computers. We also show how some earlier results in nondifferentiable optimization based on smoothing-out of kink points can be fitted into the framework of smoothed functionals. We obtain polynomial approximations of any order from smoothed functionals with kernels given by Beta distributions. Applications of smoothed functionals to optimization of min-max and other problems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, JOTA 48(1985)483–490.

    Google Scholar 

  2. D.P. Bertsekas, Nondifferentiable optimization via approximation, Math. Progr. Study 3(1975)1–25.

    Google Scholar 

  3. C. Charalambous and J.W. Bandler, Non-linear minimax optimization as a sequence of leastpth optimization with finite values ofp, Int. J. Syst. Sci. 7(1976)377–391.

    Google Scholar 

  4. C. Charalambous and A.R. Conn, An efficient method to solve the minimax problem directly, SIAM J. Numer. Anal. 15(1978)162–187.

    Google Scholar 

  5. F.H. Clarke, Generalized gradients and applications, Trans. Am. Math. Soc. 205(1975)247–262.

    Google Scholar 

  6. F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley Interscience, New York, 1983).

    Google Scholar 

  7. V.F. Demyanov, Quasidifferentiable and non-smooth optimization problems, Eng. Cybern 21(1984)6–15.

    Google Scholar 

  8. V.F. Demyanov and V.N. Malozemov,Introduction to Minimax (Wiley, New York, 1974).

    Google Scholar 

  9. R. Fletcher,Practical Methods of Optimization (Wiley, New York, 1980).

    Google Scholar 

  10. A.M. Geoffrion, Objective function approximations in mathematical programming, Math. Prog 13(1977)23–37.

    Google Scholar 

  11. A.M. Gupal,Stochastic Methods for Solving Nonsmooth Extremum Problems (Naukova Dumka, Kiev, 1979).

    Google Scholar 

  12. J. Gwinner, Bibliography on nondifferentiable optimization and non-smooth analysis, J. Comput Appl. Math. 7(1981)277–285.

    Google Scholar 

  13. J. Hald and K. Madsen, Combined LP and quasi-Newton methods for minimax optimization, Mat Progr. 20(1981)49–62.

    Google Scholar 

  14. J. Hald and K. Madsen, Combined LP and quasi-Newton methods for nonlinearl 1 optimization, SIAM J. Numer. Anal. 22(1985)68–80.

    Google Scholar 

  15. R.W. Hamming,Digital Filters (Prentice-Hall, 1977)

  16. F.J. Harris, On the use of windows for harmonic analysis with discrete Fourier transform, Proc. IEJ 66(1978)51–83.

    Google Scholar 

  17. S.E. Hersom, Smoothing for piece-wise linear functions, Technical Report No. 71, Numerical Optimization Centre, The Hartfield Polytechnic, Hartfield (1975).

  18. V.Y. Katkovnik, Method of averaging operators in iterative algorithms for solution of stochastic extremal problems, Kibernetica 4(1972)123–131, in Russian.

    Google Scholar 

  19. V.Y. Katkovnik,Linear Estimations and Stochastic Optimization Problems (Nauka, Moscow, 1976) in Russian.

    Google Scholar 

  20. K.C. Kiwiel,Methods of Descent for Nondifferentiable Optimization (Springer, Berlin, 1985).

    Google Scholar 

  21. P.P. Korovkin,Inequalities (Nauka, Moscow, 1974) in Russian.

    Google Scholar 

  22. J. Kreimer, Stochastic optimization: an adaptive approach, D.Sc. Thesis, Technion, Haifa (1984).

    Google Scholar 

  23. J. Kreimer and R.Y. Rubinstein, Smoothed functionals and constrained stochastic approximation, SIAM J. Numer. Anal. 25, 470–487.

  24. C. Lemarechal, Nonsmooth optimization and descent methods, RR-78-4, International Institute for Applied Systems Analysis, Laxenburg, Austria (1978).

    Google Scholar 

  25. C. Lemarechal, Nondifferentiable optimization, in:Nonlinear Optimization, Proc. NATO Advanced Research Institute(1981) pp. 85–89.

  26. D.Q. Mayne and E. Polak, Outer approximation algorithm for nondifferentiable optimization problems, JOTA 42(1984)19–30.

    Google Scholar 

  27. D.Q. Mayne and E. Polak, Nondifferentiable optimization via adaptive smoothing, JOTA 43(1984)601–613.

    Google Scholar 

  28. R. Mifflin, A modification and an extension of Lemarechal's algorithm for nonsmooth minimization, Math. Progr. Study 17(1982)77–90.

    Google Scholar 

  29. E.A. Nurminski,Numerical Methods for Solving Deterministic and Stochastic Minimax Problems (Naukova Dumka, Kiev, 1979).

    Google Scholar 

  30. E.A. Nurminski (ed.), Progress in nondifferentiable optimization, CP-82-98, International Institute for Applied Systems Analysis, Laxenburg, Austria (1982).

    Google Scholar 

  31. E. Polak and D.Q. Mayne, On three approaches to the construction of nondifferentiable optimization algorithms, in:System Modelling and Optimization, Lecture Notes in Control and Information Sciences, 59(Springer, 1984) pp. 331–337.

  32. E. Polak and D.Q. Mayne, Algorithm models for nondifferentiable optimization, SIAM J. Control Optim. 23(1985)477–491.

    Google Scholar 

  33. B.T. Poljak, Subgradient methods: a survey of Soviet research, in:Nonsmooth Optimization ed. C. Lemarechel and R. Mifflin, IIASA Proceedings Series Vol. 3 (Pergamon, Oxford, 1978) pp. 5–29.

    Google Scholar 

  34. R.A. Polyak, Smooth optimization methods for minimax problems, SIAM J. Control Optim. 26(1988)1274–1286.

    Google Scholar 

  35. R. Rockafellar, The multipliers method of Hestenes and Powell applied to convex programming, J. Optim. Theory Appl. 12(1973)555–562.

    Google Scholar 

  36. R.Y. Rubinstein,Simulation and the Monte Carlo Methods (Wiley, New York, 1981).

    Google Scholar 

  37. R.Y. Rubinstein, Smoothed functionals in stochastic optimization, Math. Oper. Res. 8(1983)26–33.

    Google Scholar 

  38. R.Y. Rubinstein,Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks (Wiley, New York, 1986).

    Google Scholar 

  39. R.Y. Rubinstein and J. Kreimer, Inventory models under uncertainty: an adaptive approach, Math Comp. Simul. 28(1986)169–188.

    Google Scholar 

  40. N.Z. Shor,Minimization Methods for Nondifferentiable Functions (Springer, Berlin, 1985).

    Google Scholar 

  41. A. Tishler and I. Zang, An absolute deviations curve-fitting algorithm for non-linear models, Studies Manag. Sci. 19(1982)81–103.

    Google Scholar 

  42. A. Tishler and I. Zang, A new maximum likelihood algorithm for piece-wise regression, J. Amer Statist. Ass. 76(1981)980–987.

    Google Scholar 

  43. I. Zang, A smoothing-out technique for min-max optimization, Math. Progr. 19(1980)61–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreimer, J., Rubinstein, R.Y. Nondifferentiable optimization via smooth approximation: General analytical approach. Ann Oper Res 39, 97–119 (1992). https://doi.org/10.1007/BF02060937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060937

Keywords