Abstract
The purpose of this paper is to identify economic mechanisms implying stable limit cycles. In particular, it is shown how the Hopf bifurcation theorem can be used to establish the existence of persistent oscillations in dynamic economic models. In most cases numerical methods have to be used to determine optimal cycles. While we start with a descriptive model, the main part deals with intertemporal optimization models. Several applications in operations research are dealt with. Examples in advertising, production, inventory, employment, R&D, and pollution control are presented.
Similar content being viewed by others
References
A. Araujo and J.A. Scheinkman, Smoothness, comparative dynamics, and the turnpike property, Econometrica 45(1977)601.
U. Ascher, J. Christiansen and R.D. Russel, A collocation solver for mixed order systems of boundary value problems, Math. Comput. 33(1978)659.
N.T.J. Baily,The Mathematical Theory of Epidemics (Hafner, New York, 1957).
F.M. Bass, A new product growth model for consumer durables, Manag. Sci. 15(1969)215.
R.F. Baum, Existence theorems for Lagrange control problems with unbounded time domain, J. Opt. Theory Appl. 19(1976)89.
J. Benhabib, A note on optimal growth and intertemporally dependent preferences, Econ. Lett. 1(1978)321.
J. Benhabib and K. Nishimura, The Hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth, J. Econ. Theory 20(1979)421.
A. Bensoussan, E.G. Hurst Jr. and B. Näslund,Management Applications of Modern Control Theory (North-Holland, Amsterdam, 1974).
M. Boldrin, Persistent oscillations and chaos in dynamic economic models: Notes for a survey, in:The Economy as an Evolving Complex System, ed. P.W. Anderson, K.J. Arrow and D. Pines (Addison-Wesley, Redwood City, CA, 1988), p. 49.
M. Boldrin and L. Montrucchio, On the indeterminacy of capital accumulation paths, J. Econ. Theory 40(1986)26.
W.A. Brock, Nonlinearity and complex dynamics in economics and finance, in:The Economy as an Evolving Complex System, ed. P.W. Anderson, K.J. Arrow and D. Pines (Addison-Wesley, Redwood City, CA, 1988), p. 77.
W.A. Brock and J.A. Scheinkman, Global asymptotic stability of optimal control systems with applications to the theory of economic growth, J. Econ. Theory 12(1976)164.
F.H. Clarke,Optimization and Non-smooth Analysis (Wiley, New York, 1983).
W.D. Dechert and K. Nishimura, A complete characterization of optimal growth paths in an aggregated model with a nonconcave production function, J. Econ. Theory 31(1983)332.
E. Dockner and G. Feichtinger, On the optimality of limit cycles in dynamic economic systems, J. Econ. 53(1991)31.
E. Dockner, G. Feichtinger and A. Novak, On cyclical production and marketing decisions: Application of Hopf bifurcation theory, Int. J. Syst. Sci. 22(1991)1035.
J.A. Dodson and E. Muller, Models of new product diffusion through advertising and word-of-mouth, Manag. Sci. 24(1978)1568.
R. Dorfman and P.O. Steiner, Optimal advertising and optimal quality, Amer. Econ. Rev. 44(1954)826.
G. Feichtinger, Limit cycles in economic control models, in:Optimal Control, Proc. Conf. on Optimal Control and Variational Calculus, Oberwolfach, June 15–21, 1986 ed. R. Bulirsch et al. (Springer, Berlin, 1987) p. 46.
G. Feichtinger, Hopf bifurcation in an advertising diffusion model, J. Econ. Behavior & Organization 17(1992).
G. Feichtinger and R.F. Hartl,Optimale Kontrolle ökonomischer Prozesse. Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften (De Gruyter, Berlin, 1986).
G. Feichtinger, V. Kaitala and A. Novak, Stable resource-employment limit cycles in an optimally regulated fishery, in:Dynamic Economic Models and Optimal Control, ed. G. Feichtinger (North-Holland, Amsterdam, 1992), to be published.
G. Feichtinger, K.-P. Kistner and A. Luhmer, Ein dynamisches Modell des Intensitätssplittings, Z.f. Betriebswirtschaft 58. Jg.(1988)1242.
G. Feichtinger and A. Novak, Optimal pulsing in an advertising diffusion model, Forschungsbericht Nr. 129, Institute for Econometrics, OR and Systems Theory, Vienna University of Technology (June, 1990).
G. Feichtinger and A. Novak, Optimal periodic treatment in cancer chemotherapy, Working paper, Vienna University of Technology (August, 1990).
G. Feichtinger and A. Novak, Optimal consumption, training, working time and leisure over the life cycle, J. Opt. Theory Appl. (1992), forthcoming.
G. Feichtinger and G. Sorger, Optimal oscillations in control models: How can constant demand lead to cyclical production?, Oper. Res. Lett. 5(1986)277.
G. Feichtinger and G. Sorger, Periodic research and development, in:Optimal Control Theory and Economic Analysis, Vol. 3, ed. G. Feichtinger (North-Holland, Amsterdam, 1988) p. 121.
F.M. Feinberg, Pulsing policies for aggregate advertising models, Ph.D. thesis (Sloan School of Management, M.I.T., Cambridge, MA, USA, 1988).
B.A. Forster, On a one state variable optimal control problem: Consumption-pollution trade-offs, in:Applications of Control Theory to Economic Analysis, ed. J.D. Pitchford and S.J. Turnovsky (North-Holland, Amsterdam, 1977), p. 35.
S. Glaister, Advertising policy and returns to scale in markets where information is passed between individuals, Economica 41(1974)139.
J.P. Gould, Diffusion processes and optimal advertising policy, in:Microeconomic Foundations of Employment and Inflation Theory, ed. E.S. Phelps et al. (Macmillan, London; Norton, New York, 1970).
J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983).
R.F. Hartl, A Simple proof of the monotonicity of the state trajectories in autonomous control problems, J. Econ. Theory 41(1987)211.
R.F. Hartl and S.P. Sethi, Optimal control problems with differential inclusions: Sufficiency conditions and an application to a production-inventory model, Opt. Control Appl. Meth. 5(1984)289.
A. Haurie and A. Hollander, A note on incremental incentives in continuous time, in:Optimal Control Theory and Economic Analysis, Vol. 3, ed. G. Feichtinger (North-Holland, Amsterdam, 1988), p. 143.
C.C. Holt, F. Modigliani, J.F. Muth and H.A. Simon,Planning Production, Inventories and Work Force (Prentice-Hall, Englewood Cliffs, 1960), p. 143.
A.P. Jacquemin, Optimal control advertising policy, Metro-Economica 25(1973)200.
M.I. Kamien and N.L. Schwartz,Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management (North-Holland, Amsterdam, 1981).
M.C. Kemp, N.V. Long and K. Shimomura, Cyclical and non-cyclical redistributive taxation, Working Paper, University of New South Wales, Australia (1990).
P. L'Ecuyer, A. Haurie and A. Hollander, Optimal research and development under an incremental tax incentive scheme, Oper. Res. Lett. 4(1985)85.
J.D.C. Little, Aggregate advertising models: The state of the art, Oper. Res. 27(1979)629.
N.V. Long and H. Siebert, Lay-off restraints, employment subsidies, and the demand for labour, in:Optimal Control Theory and Economic Analysis, Vol. 2, ed. G. Feichtinger (North-Holland, Amsterdam, 1985), p. 239.
A. Luhmer, A. Steindl, G. Feichtinger, R.F. Hartl and G. Sorger, ADPULS in continuous time, Europ. J. Oper. Res. 34(1988)171.
V. Mahajan and E. Muller, Advertising pulsing policies for generating awareness for new products, Marketing Sci. 5(1986)89.
V. Mahajan, E. Muller and R.A. Kerin, Introduction strategy for new products with positive and negative word-of-mouth, Manag. Sci. 30(1984)1389.
M. Majumdar and T. Mitra, Intertemporal allocation with a non-convex technology: The aggregative framework, J. Econ. Theory 27(1982)101.
A. Medio, Oscillations in optimal growth models, J. Econ. Behavior & Organization 8(1987)413.
E. Muller, Trial/awareness advertising decision: A control problem with phase diagrams with non-stationary boundaries, J. Econ. Dyn. Control 6(1983)333.
B. Näslund, Consumer behavior and optimal advertising, J. Oper. Res. Soc. 20(1979)237.
M. Nerlove and K. Arrow, Optimal advertising policy under dynamical conditions, Economica 29(1962)129.
S. Ozga, Imperfect markets through lack of knowledge, Quarterly J. Econ. 74(1960)29.
M. Parlar, A problem in jointly optimal production and advertising decisions, Int. J. Syst. Sci. 17(1986)1373.
R.T. Rockafellar, Saddle points of Hamiltonian systems in convex Lagrange problems having a nonzero discount rate, J. Econ. Theory 12(1976)71.
H.E. Ryder Jr. and G.M. Heal, Optimal growth with intertemporally dependent preferences, Rev. Econ. Studies 121(1973)1.
S.C. Salop, Wage differentials in a dynamic theory of the firm, J. Econ. Theory 6(1973)321.
M.W. Sasieni, Optimal advertising expenditure, Manag. Sci. 18(1971)64.
J.R. Schmalensee,The Economics of Advertising (North-Holland, Amsterdam, 1972).
J.A. Scheinkman, On optimal steady state ofn-sector growth models when ultility is discounted, J. Econ. Theory 12(1976)11.
S.P. Sethi, Dynamic optimal control models in advertising: A survey, SIAM Rev. 19(1977)685.
S.P. Sethi, Optimal advertising policy with the contagion model, J. Opt. Theory Appl. 29(1979)615.
H. Simon, ADPULS: An advertising model with wearout and pulsation, J. Marketing Res. 19(1982)352.
A.K. Skiba, Optimal growth with a convex-concave production function, Econometrica 46(1978)527.
A. Steindl, COLSYS: Ein Kollokationsverfahren zur Lösung von Randtwertproblemen bei Systemen gewöhnlicher Differialgleichungen, Diplomarbeit, Techn. Univ. Wien (1981).
A. Steindl, G. Feichtinger, R.F. Hartl and G. Sorger, On the optimality of cyclical employment policies: A numerical investigation, J. Econ. Dyn. Control 10(1986)457.
G. Stigler, The economics of information, J. Pol. Econ. 69(1961)213.
M.L. Vidale and H.B. Wolfe, An operations research study of sales response to advertising, Oper. Res. 5(1957)370.
F. Wirl, A new route to cyclical strategies in two dimensional optimal control models, Technical University Vienna (1990), this volume.
Author information
Authors and Affiliations
Additional information
This research was supported by the Austrian Science Foundation under contract No. P 6601.
Rights and permissions
About this article
Cite this article
Feichtinger, G. Limit cycles in dynamic economic systems. Ann Oper Res 37, 313–344 (1992). https://doi.org/10.1007/BF02071063
Issue Date:
DOI: https://doi.org/10.1007/BF02071063