Skip to main content
Log in

The realization problem for Euclidean minimum spanning trees is NP-hard

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We show that the problem of determining whether a tree can be drawn so that it is the Euclidean minimum spanning tree of the locations of its vertices is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display in drawing graphs.Proc. ACM Symp. on Computational Geometry, 1989, pp. 51–60.

  2. B. Becker and H. G. Osthof. Layout with wires of balanced length.Information and Computation, 73:45–58, 1987.

    Google Scholar 

  3. S. Bhatt and S. Cosmodakis. The complexity of minimizing wire lengths in VLSI layouts.Information Processing Letters, 25:263–267, 1987.

    Google Scholar 

  4. P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. InGraph Drawing 93, 1993.

  5. F. J. Brandenburg. Nice drawings of graphs and trees are computationally hard. Technical Report MIP-8820, Fakultat fur Mathematik und Informatik, University Passau, 1988.

  6. P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of binary trees. Technical Report 11.91, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1991.

  7. M. Dillencourt. Realizability of delaunay triangulations.Information Processsing Letters, 38:283–287, 1990.

    Google Scholar 

  8. P. D. Eades. Drawing free trees.Bulletin of the Institute for Combinatorics and Its Applications, 5:10–36, 1992.

    Google Scholar 

  9. P. Eades, T. Lin, and X. Lin. Two tree drawing conventions.International Journal of Computational Geometry and Applications, 3(2):133–153, 1993.

    Google Scholar 

  10. P. Eades and S. Whitesides. The realization problem for nearest neighbour graphs. InLatin '95:Theoretical Informatics, Lecture Notes in Computer Science, Vol. 911, pp. 245–256. Springer-Verlag, 1995. (Full version to appear in Theoretical Computer Science).

  11. M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

    Google Scholar 

  12. A. Garg, M. T. Goodrich, and R. Tamassia. Area-efficient upward tree drawings.Proc. ACM Symp. on Computational Geometry, 1993, pp. 359–368.

  13. A. Gregori. Unit length embedding of binary trees on a square grid.Information Processing Letters, 31:167–172, 1989.

    Google Scholar 

  14. P. J. Idicula. Drawing trees in grids. Master's thesis, Department of Computer Science, University of Auckland, 1990.

  15. C. E. Leiserson. Area-efficient graph layouts (for VLSI).Proc. IEEE Symp. on the Foundations of Computer Science, 1980, pp. 270–281.

  16. A. Lubiw and N. Sleumer. Maximal outerplanar graphs are relative neighbourhood graphs.Proc, Canadian Conf. on Computational Geometry, 1993, pp. 198–203.

  17. Z. Miller and J. B. Orlin. Np-completeness for minimizing maximum edge length in grid embeddings.Journal of Algorithms, 6:10–16, 1985.

    Google Scholar 

  18. C. Monma and S. Suri. Transitions in minimum spanning trees.Proc. ACM Symp. on Computational Geometry, 1991, pp. 239–249.

  19. E. Reingold and J. Tilford. Tidier drawing of trees.IEEE Transactions on Software Engineering, 7(2):223–228, 1981.

    Google Scholar 

  20. K. Sugiyama. A readability requirement on drawing digraphs: Level assignment and edge removal for reducing the total length of lines. Technical Report 45, International Institute for Advanced Study of Social Information Science, March 1984.

  21. K. J. Supowit and E. M. Reingold. The complexity of drawing trees nicely.Acta Informatica, 18:377–392, 1983.

    Google Scholar 

  22. G. Toussaint. A graph-theoretical primal sketch. In G. Toussaint, editor,Computational Morphology, pp. 229–260. Elsevier, Amsterdam, 1988.

    Google Scholar 

  23. L. Valiant. Universality considerations in VLSI circuits.IEEE Transactions on Computers, 30(2): 135–140, 1981.

    Google Scholar 

  24. J. Vaucher. Pretty printing of trees.Software — Practice and Experience, 10(7):553–561, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Di Battista and R. Tamassia.

Partially written while this author was visiting the University of Newcastle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eades, P., Whitesides, S. The realization problem for Euclidean minimum spanning trees is NP-hard. Algorithmica 16, 60–82 (1996). https://doi.org/10.1007/BF02086608

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086608

Key words

Navigation