Skip to main content
Log in

Drawings of graphs on surfaces with few crossings

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We give drawings of a complete graphK n withO(n 4 log2 g/g) many crossings on an orientable or nonorientable surface of genusg ≥ 2. We use these drawings ofK n and give a polynomial-time algorithm for drawing any graph withn vertices andm edges withO(m 2 log2 g/g) many crossings on an orientable or nonorientable surface of genusg ≥ 2. Moreover, we derive lower bounds on the crossing number of any graph on a surface of genusg ≥ 0. The number of crossings in the drawings produced by our algorithm are within a multiplicative factor ofO(log2 g) from the lower bound (and hence from the optimal) for any graph withm ≥ 8n andn 2/mgm/64.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Klawe, M., and Shor, P., Multilayer grid embeddings for VLSI,Algorithmica,6 (1991), 129–143.

    Google Scholar 

  2. Awerbuch, B., and Leighton, T., A simple local control approximation algorithm for multicommodity flow,Proc. 34th Annual Symp. on Foundations of Computer Science, 1993, pp. 459–468.

  3. Beineke, L. W., and Ringeisen, R. D., On the crossing number product of cycles and graphs of order four,J. Graph Theory,4 (1980), 145–155.

    Google Scholar 

  4. Brahana, H. R., Systems of circuits of two-dimensional manifolds,Ann. of Math.,30 (1923), 234–243.

    Google Scholar 

  5. Chartrand, G., and Lesniak, L.,Graphs and Digraphs, Wadsworth and Brooks/Cole, Monterey, CA, 1986.

    Google Scholar 

  6. Eades, P., and Wormald, N. C., Edge crossings in drawings of bipartite graphs,Algorithmica,11 (1994), 379–103.

    Google Scholar 

  7. Erdös, P., and Guy, R. P., Crossing number problems,Amer. Math. Monthly,80 (1973), 52–58.

    Google Scholar 

  8. Garey, M. R., and Johnson, D. S., Crossing number is NP-complete,SIAM J. Algebraic Discrete Methods,4 (1983), 312–316.

    Google Scholar 

  9. Grigoriadis, M. D., and Khachiyan, L., Fast approximation schemes for convex programs,SIAM J. Optim.,4 (1994), 86–107.

    Google Scholar 

  10. Gross, J. L., On infinite family of octahedral crossing numbers,J. Graph Theory,2 (1978), 171–178.

    Google Scholar 

  11. Guy, R. K., and Jenkins, T., The toroidal crossing number ofK m.n ,J. Combin. Theory,6 (1969), 235–250.

    Google Scholar 

  12. Guy, R. K., Jenkins, T., and Schaer, J., The toroidal crossing number of the complete graph,J. Combin. Theory,4 (1968), 376–390.

    Google Scholar 

  13. Kainen, P. C., A lower bound for crossing number of graphs with applications toK n ,K p.q , andQ(d), J. Combin. Theory Ser. B,12 (1972), 287–298.

    Google Scholar 

  14. Kainen, P. C., and White, A. T., On stable crossing numbers,J. Graph Theory,2 (1978), 181–187.

    Google Scholar 

  15. Klein, P., Plotkin, S., Stein, C., and Tardos, E., Faster approximation algorithms for unit capacity concurrent flow problems with applications to routing and sparsest cuts,SIAM J. Comput.,3(23) (1994), 466–488.

    Google Scholar 

  16. Kleitman, D. J., The crossing number ofK 5.n ,J. Combin. Theory,9 (1970), 315–323.

    Google Scholar 

  17. Leighton, F. T.,Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  18. Leighton, T., Makedon, F., Plotkin S., Stein, C., Tardos, E., and Tragoudas, S., Fast approximation algorithms for multicommodity flow problems,Proc. 23rd ACM Symp. on Theory of Computing, 1991, pp. 101–111.

  19. Pica, G., Pisanski, T., and Ventre, A. G. S., Cartesian products of graphs and their crossing numbers,Ann. Discrete Math.,30 (1986), 339–346.

    Google Scholar 

  20. Shahrokhi, F., and Matula, D. W., The maximum concurrent flow problem,J. Assoc. Comput. Mach.,2(37) (1990), 318–334.

    Google Scholar 

  21. Shahrokhi, F., and Székely, L. A., Effective lower bounds for crossing number, bisection width and balanced vertex separators in terms of symmetry, in:Proc. Integer Programming and Combinatorial Optimization, eds. E. Balas, G. Cournèjols, R. Kannan, CMU Press, Pittsburgh, PA, 1992, pp. 102–113.

    Google Scholar 

  22. Shahrokhi, F., and Székely, L. A., On canonical concurrent flows, crossing number and graph expansion,Combin. Probab. Comput.,3 (1994), 523–543.

    Google Scholar 

  23. Shahrokhi, F., Sýkora, O., Székely, L. A., and Vrt'o, I., The crossing number of a graph on a compact 2-manifold,Adv. in Math., to appear.

  24. Sýkora, O., and Vrt'o, I., On the crossing number of hypercubes and cube connected cycles,BIT,33 (1993), 232–237.

    Google Scholar 

  25. Szegedy, M., On plane crossing number, Unpublished manuscript, 1993.

  26. Szegedy, M., Private communication with F. Shahrokhi, 1993.

  27. White, A. T.,Graphs, Groups, and Surfaces, North-Holland, Amsterdam, 1984.

    Google Scholar 

  28. White, A. T., and Beineke, L. W., Topological graph theory, in:Selected Topics in Graph Theory, eds. L. W. Beineke and R. J. Wilson, Academic Press, New York, 1978, pp. 15–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Di Battista and R. Tamassia.

The research of the third and the fourth authors was partially supported by Grant No. 2/1138/94 of the Slovak Academy of Sciences and by EC Cooperative action IC1000 “Algorithms for Future Technologies” (Project ALTEC). A preliminary version of this paper was presented at WG93 and published in Lecture Notes in Computer Science, Vol. 790, 1993, pp. 388–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahrokhi, F., Székely, L.A., Sýkora, O. et al. Drawings of graphs on surfaces with few crossings. Algorithmica 16, 118–131 (1996). https://doi.org/10.1007/BF02086611

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086611

Key words

Navigation