Skip to main content
Log in

Routing multiple paths in hypercubes

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

We present new techniques for mapping computations onto hypercubes. Our methods speed up classical implementations of grid and tree communications by a factor of Θ(n), wheren is the number of hypercube dimensions. The speedups are asymptotically the best possible.

We obtain these speedups by mapping each edge of the guest graph onto short, edge-disjoint paths in the hypercube such that the maximum congestion on any hypercube edge isO(1). These multiple-path embeddings can be used to reduce communication time for large grid-based scientific computations, to increase tolerance to link faults, and for fast routing of large messages.

We also develop a general technique for deriving multiple-path embeddings from multiple-copy embeddings. Multiple-copy embeddings are one-to-one maps of independent copies of the guest graph within the hypercube. We present an efficient multiple-copy embedding of the cube-connected-cycles network within the hypercube. This embedding is used to derive efficient multiple-path embeddings of trees and butterfly networks in hypercubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Aiello and F. T. Leighton. Coding theory, hypercube embeddings, and fault tolerance. InProc. 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, 1991, pages 125–136.

  2. W. Aiello, F. Leighton, B. Maggs, and M. Newman. Fast algorithms for bit-serial routing on a hypercube.Math. Systems Theorv. this issue, 253–271, 1991.

  3. R. Aleliunas and A. L. Rosenberg. On embedding rectangular grids in square grids.IEEE Trans. Comput.,31:907–913, 1982.

    Google Scholar 

  4. B. Alspach, J.-C. Bermond, and D. Sotteau. Decomposition into cycles, I: Hamilton decompositions. Technical Report 87-12, Simon Fraser University, 1987.

  5. M. Baumslag and F. Annexstein. A unified framework for off-line permutation routing in parallel networks.Math. Systems Theory, this issue, 233–251, 1991.

  6. S. Bhatt, F. Chung, J.-W. Hong, F. Leighton, and A. Rosenberg. Optimal simulations by butterfly networks. InProc. 20th Annual ACM Symposium on Theory of Computing, pages 192–204, 1988.

  7. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. Optimal simulations of tree machines. InProc. 27th Annual Symposium on Foundations of Computer Science, pages 274–282, 1986.

  8. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. Universal graphs for bounded-degree trees and planar graphs.SIAM J. Discrete Math.,2(2):145–155, 1989.

    Google Scholar 

  9. M. Chan. Dilation-2 embeddings of grids into hypercubes. InProc. Internat. Conference on Parallel Processing, pages 295–298, 1988.

  10. M. Chan. Embedding ofd-dimensional grids into optimal hypercubes. InProc. ACM Symposium on Parallel Algorithms and Architectures, pages 52–57, 1989.

  11. W. Dally and C. Seitz. Deadlock-free message routing in multiprocessor interconnection networks.IEEE Trans. Comput.,36:547–553, 1987.

    Google Scholar 

  12. W. J. Dally. A VLSI architecture for concurrent data structures. Technical Report 5209, California Institute of Technology, 1986.

  13. J. A. Ellis. Embedding rectangular grids into square grids. Typescript, 1990.

  14. D. S. Greenberg. Full utilization of communication resources. Ph.D. thesis, Yale University, 1991.

  15. D. S. Greenberg, L. S. Heath, and A. L. Rosenberg. Optimal embeddings of butterfly-like graphs in the hypercube.Math. Systems Theory,23:61–77, 1990.

    Google Scholar 

  16. I. Havel and P. Liebl. Embedding the polytomic tree into then-cube.Časopis Pěst. Mate.,98:307–314, 1973.

    Google Scholar 

  17. D. Hillis,The Connection Machine. MIT Press, Cambridge, MA, 1985.

    Google Scholar 

  18. C.-T. Ho and S. L. Johnsson. Spanning balanced trees in boolean cubes.SIAM J. Sci. Statist. Comput.,10(4):607–630, 1989.

    Google Scholar 

  19. S. L. Johnsson. Communication efficient basic linear algebra computations on hypercube architectures.J. Par. Dist. Comput.,4:133–172, 1987.

    Google Scholar 

  20. S. L. Johnsson and C.-T. Ho. Multiplication of arbitrarily shaped matrices on boolean cubes using the full communications bandwidth. Technical Report 721, Yale University, July 1989.

  21. A. Karlin and E. Upfal. Parallel hashing—an efficient implementation of shared memory. InProc. 18th Annual ACM Symposium on Theory of Computing, 1986, pages 160–168.

  22. S. R. Kosaraju and M. J. Atallah. Optimal simulations between mesh-connected arrays of processors. Technical Report 561, Purdue University, September 1986.

  23. F. T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms. InProc. 29th Annual Symposium on Foundations of Computer Science, pages 256–269, 1988.

  24. N. Pippenger. Parallel communication with limited buffers. InProc. 25th Annual Symposium on Foundations of Computer Science, pages 127–136, 1984.

  25. F. Preparata and J. Vuillemin. The cube-connected cycles: A versatile network for parallel computation.Comm. ACM,24(5):300–309, 1981.

    Google Scholar 

  26. M. O. Rabin. Efficient dispersal of information for security, load balancing and fault tolerance. Technical Report 02-87, Harvard University, 1987.

  27. A. G. Ranade. How to emulate shared memory. InProc. 28th Annual Symposium on Foundations of Computer Science, pages 185–194, 1987.

  28. E. M. Reingold, J. Neivergelt, and N. Deo.Combinatorial Algorithms: Theory and Practice. Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  29. C. Seitz. The cosmic cube.Comm. ACM,28(1):22–33, 1985.

    Google Scholar 

  30. Q. Stout and B. Wagar. Intensive hypercube communication, I: Prearranged communication in link-bound machines. Technical Report 9-87, University of Michigan, 1987.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by NSF/DARRA Grant CCR-8908285, NSF Grant CCR-8807426, and AFOSR Grant 89-0382.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, D.S., Bhatt, S.N. Routing multiple paths in hypercubes. Math. Systems Theory 24, 295–321 (1991). https://doi.org/10.1007/BF02090404

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02090404

Keywords

Navigation