Skip to main content
Log in

Degeneracy in interior point methods for linear programming: a survey

  • Part I: Surveys
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The publication of Karmarkar's paper has resulted in intense research activity into Interior Point Methods (IPMs) for linear programming. Degeneracy is present in most real-life problems and has always been an important issue in linear programming, especially in the Simplex method. Degeneracy is also an important issue in IPMs. However, the difficulties are different in the two methods. In this paper, we survey the various theoretical and practical issues related to degeneracy in IPMs for linear programming.

We survey results, which, for the most part, have already appeared in the literature. Roughly speaking, we shall deal with the effect of degeneracy on the following: the convergence of IPMs, the trajectories followed by the algorithms, numerical performance, and finding basic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Adler, N. Karmarkar, M.G.C. Resende and G. Veiga, An implementation of Karmarkar's algorithm for linear programming, Math. Progr. 44 (1989) 297–335. Errata in: Math. Progr. 50 (1991) 415.

    Article  Google Scholar 

  2. I. Adler and D.D.C. Monteiro, A geometric view of parametric linear programming, Algorithmica 8 (1992) 161–176.

    Article  Google Scholar 

  3. I. Adler and D.D.C. Monteiro, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Progr. 50 (1991) 29–51.

    Article  Google Scholar 

  4. K.M. Anstreicher, Linear programming and the Newton barrier flow, Math. Progr. 41 (1988) 363–373.

    Article  Google Scholar 

  5. M.D. Asic, V.V. Kovacevic-Vujcic and M.D. Radosavljevic-Nikolic, Asymptotic behavior of Karmarkar's method for linear programming, Math. Progr. 46 (1990) 173–190.

    Article  Google Scholar 

  6. M.D. Asic, V.V. Kovacevic-Vujcic and M.D. Radosavljevic-Nikolic, A note on limiting behavior of the projective and the affine rescaling algorithms, Contemp. Math. 114 (1990) 151–157.

    Google Scholar 

  7. M.L. Balinski and A.W. Tucker, Duality theory of linear programs: A constructive approach with applications, SIAM Rev. 11 (1969) 499–581.

    Article  Google Scholar 

  8. E.R. Barnes, A variation on Karmarkar's algorithm for solving linear programming problems, Math. Progr. 36 (1986) 174–182.

    Article  Google Scholar 

  9. E.R. Barnes, Some results concerning convergence of the affine scaling algorithm, Contemp. Math. 114 (1990) 131–139.

    Google Scholar 

  10. E.R. Barnes, S. Chopra and D.L. Jensen, A polynomial-time version of the affine scaling algorithm, Working Paper 88-101, Graduate School of Business and Administration, New York University, NY (1988).

    Google Scholar 

  11. D.A. Bayer and J.C. Lagarias, The nonlinear geometry of linear programming, I. Affine and projective scaling trajectories, II. Legendre transform coordinates, Trans. AMS 314 (1989) 499–581.

    Google Scholar 

  12. R.E. Bixby, J.W. Gregory, I.J. Lustig, R.E. Marsten and D.F. Shanno, Very large-scale linear programming: A case study in combining interior point and simplex methods, Oper. Res. 40 (1992) 885–897.

    Article  Google Scholar 

  13. R.E. Bixby and M.J. Saltzman, Recovering an optimal LP basis from an interior point solution, Technical Report 607, Department of Mathematical Sciences, Clemson University, Clemson, SC (1992).

    Google Scholar 

  14. V. Chandru and B. Kochar, A class of algorithms for linear programming, Research Memorandum 85-14, Department of Industrial Engineering, Purdue University, West Lafayette, IN (1985).

    Google Scholar 

  15. A. Charnes and K.O. Kortanek, An opposite sign algorithm for purification to an extreme point solution, Memorandum No. 129, Office of Naval Research, Northwestern University, Evanston, IL (1963).

    Google Scholar 

  16. G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).

    Google Scholar 

  17. I.I. Dikin, Iterative solution of problems of linear and quadratic programming, Sov. Math. Doklady 8 (1967) 674–675.

    Google Scholar 

  18. I.I. Dikin, On the speed of an iterative process, Upravlyaemye Sistemi 12 (1974) 54–60.

    Google Scholar 

  19. I.I. Dikin, Determination of the interior point of a system of linear inequalities, Cybern. Syst. Anal. 1 (1992).

  20. I.I. Dikin, On the convergence of dual variables, Technical Report, Siberian Energy Institute, Irkutsk, USSR (1991).

    Google Scholar 

  21. A.S. El-Bakry, R.A. Tapia and Y. Zhang, A study of indicators for identifying zero variables in interior point methods, Technical Report 91-15, Department of Mathematical Sciences, Rice University, Houston, TX (1991).

    Google Scholar 

  22. T. Gal,Postoptimal Analysis, Parametric Programming and Related Topics (McGraw-Hill, 1979).

  23. T. Gal, Shadow prices and sensitivity analysis in linear programming under degeneracy, state-of-the-art-survey, OR Spektrum 8 (1986) 59–71.

    Article  Google Scholar 

  24. D.M. Gay, Stopping tests that compute optimal solutions for interior-point linear programming algorithms, in:Advances in Numberical Partial Differential Equations and Optimization, Proc. 5th Mexico-United States Workshop, eds. S. Gomez, J.P. Hennart and R.A. Tapia, Proc. in Applied Mathematics, Vol. 47 (1991) pp. 17–42.

    Google Scholar 

  25. D.M. Gay, A variant of Karmarkar's linear programming problems in standard form, Math. Progr. 37 (1987) 81–90. Errata in: Math. Progr. 40 (1988) 111.

    Article  Google Scholar 

  26. P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projective method, Math. Progr. 36 (1986) 183–209.

    Article  Google Scholar 

  27. D. Goldfarb and M.J. Todd, Linear programming, in:Optimization, Handbooks in Operations Research and Management Science, Vol. 1, eds. G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (North-Holland, Amsterdam, The Netherlands, 1989) pp. 141–170.

    Google Scholar 

  28. A.J. Goldman and A.W. Tucker, Theory of linear programming, in:Linear Inequalities and Related Systems, eds. H.W. Kuhn and A.W. Tucker, Annals of Mathematical Studies 38 (Princeton University Press, Princeton, NJ, 1956).

    Google Scholar 

  29. C.C. Gonzaga, An algorithm for solving linear programming problems inO(n 3 L) operations, in:Progress in Mathematical Programming: Interior Point and Related Methods, ed. N. Megiddo (Springer, New York, 1989) pp. 1–28.

    Google Scholar 

  30. C.C. Gonzaga, Polynomial affine algorithms for linear programming, Math. Progr. 49 (1990) 7–21.

    Article  Google Scholar 

  31. C.C. Gonzaga, Large step path-following methods for linear programming, part I: Barrier function method, SIAM J. Optim. 1 (1991) 268–279.

    Article  Google Scholar 

  32. C.C. Gonzaga, Large step path-following methods for linear programming, part II: Potential reduction method, SIAM J. Optim. 1 (1991) 280–292.

    Article  Google Scholar 

  33. C.C. Gonzaga, Convergence of the large step primal affine scaling algorithm for primal nondegenerate linear programs, Technical Report ES-230/90, Department of Systems Engineering and Computer Sciences, COPPE Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (1990).

    Google Scholar 

  34. C.C. Gonzaga, Search directions for interior linear programming methods, Algorithmica 6 (1991) 153–181.

    Article  Google Scholar 

  35. C.C. Gonzaga, A simple presentation of Karmarkar's algorithm, Technical Report, Department of Systems Engineering and Computer Sciences, COPPE Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (1988).

    Google Scholar 

  36. C.C. Gonzaga, Path following methods for linear programminig, SIAM Rev. 34 (1992) 167–227.

    Article  Google Scholar 

  37. O. Güler, Existence of interior points and interior paths in nonlinear monotone complementarity problems, Working Paper, The College of Business Administration, The University of Iowa, Iowa City, Iowa (1990), to appear in: Math. Oper. Res.

    Google Scholar 

  38. O. Güler and Y. Ye, Convergence behavior of some interior-point algorithms, Working Paper 91-04, The College of Business Administration, The University of Iowa, Iowa City, Iowa (1991), to appear in: Math. Progr.

    Google Scholar 

  39. O. Güler, C. Roos, T. Terlaky and J.-Ph. Vial, Interior point approach to the theory of linear programming, Technical Report No. 1992.3, Département d'Economie Commerciale et Industrielle, Université de Genève, Switzerland (1992).

    Google Scholar 

  40. Hall and R.J. Vanderbei, private communication (1992).

  41. D. den Hertog, Interior point approach to linear, quadratic and convex programming — Algorithms and complexity, Ph.D. Thesis, Faculty of Mathematics and Informatics, TU Delft, Delft, The Netherlands (1992) (Kluwer, Dordrecht, The Netherlands), to be published.

    Google Scholar 

  42. D. den Hertog and C. Roos, Survey of search directions of interior point methods, Math. Progr. 52 (1991) 481–509.

    Article  Google Scholar 

  43. D. den Hertog, C. Roos and T. Terlaky, A potential-reduction variant of Renegar's short-step path-following method for linear programming, Lin. Alg. Appl. 152 (1991) 43–68.

    Article  Google Scholar 

  44. D. den Hertog, C. Roos and J.-Ph. Vial, A complexity reduction for the long-step path-following algorithm for linear programming, SIAM J. Optim. 2 (1992) 71–87.

    Article  Google Scholar 

  45. H. Imai, On the convexity of the multiplicative version of Karmarkar's potential function, Math. Progr. 40 (1988) 29–32.

    Article  Google Scholar 

  46. M. Iri, A proof of the polynomiality of the Iri-Imai method for linear programming, Technical Report, Department of Mathematical Engineering and Information Physics, The University of Tokyo, Tokyo, Japan (1991).

    Google Scholar 

  47. M. Iri and H. Imai, A multiplicative barrier function method for linear programming, Algorithmica 1 (1986) 455–482.

    Article  Google Scholar 

  48. B. Jansen, C. Roos and T. Terlaky, An interior point approach to postoptimal and parametric analysis in linear programming, Technical Report No. 92-21, Faculty of Mathematics and Informatics, TU Delft, Delft, The Netherlands (1992), to appear in Math. Progr.

    Google Scholar 

  49. J.A. Kaliski, A decomposition variant for large scale linear programming, Ph.D. Thesis, Department of Management Sciences, The University of Iowa, Iowa City, Iowa (1992).

    Google Scholar 

  50. N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–395.

    Article  Google Scholar 

  51. M. Kojima, Determining basic variables of optimal solutions in Karmarkar's new LP algorithm, Algorithmica 1 (1986) 499–515.

    Article  Google Scholar 

  52. M. Kojima, N. Megiddo and S. Mizuno, Theoretical convergence of large-step primal-dual interior point algorithms for linear programs, Math. Progr. 59 (1993) 1–22.

    Article  Google Scholar 

  53. M. Kojima, S. Mizuno and T. Noma, Limiting behavior of trajectories generated by a continuation method for monotone complementarity problems, Math. Oper. Res. 15 (1990) 662–675.

    Article  Google Scholar 

  54. M. Kojima, S. Mizuno and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math. Progr. 4 (1989) 41–26.

    Google Scholar 

  55. M. Kojima, N. Megiddo, T. Noma and A. Yoshise,A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science 538 (Springer, New York, 1991).

    Google Scholar 

  56. M. Kojima, S. Mizuno and A. Yoshise, AnO(√nL) iteration potential-reduction algorithm for linear complementarity problems, Math. Progr. 50 (1991) 331–342.

    Article  Google Scholar 

  57. M. Kojima and K. Tone, An efficient implementation of Karmarkar's new LP algorithm, Research Report on Information Sciences B-180, Department of Information Sciences, Tokyo Institute of Technology, Tokyo 152, Japan (1986).

    Google Scholar 

  58. K.O. Kortanek and J. Zhu, New purification algorithms for linear programming, Naval Res. Log. Quarterly 35 (1988) 571–583.

    Article  Google Scholar 

  59. E. Kranich, Interior point methods for mathematical programming: A bibliography, Diskussionsbeitrag Nr. 171, Gesamthochschule FernUniversität Hagen, Germany (1991). Can be obtained by e-mail: netlib@research.att.com.

    Google Scholar 

  60. I.J. Lustig, An implementation of a strongly polynomial time algorithm for basis recovery (using an interior point method), Technical Report (in preparation), School of Engineering and Applied Science, Department of Civil Engineering and Operations Research, Princeton University, Princeton, NJ (1992).

    Google Scholar 

  61. I.J. Lustig, R.E. Marsten and D.F. Shanno, On implementing Mehrotra's predictor corrector interior point method for linear programming, SIAM J. Optim. 2 (1990) 435–449.

    Article  Google Scholar 

  62. I.J. Lustig, R.E. Marsten and D.F. Shanno, Interior method vs. simplex method: Beyond netlib, COAL Newsletter 19 (1991) 41–44.

    Google Scholar 

  63. R.E. Marsten, M.J. Saltzman, D.F. Shanno, J.F. Ballintijn and G.S. Pierce, Implementation of a dual affine interior point algorithm for linear programming, ORSA J. Comput. 1 (1991) 287–297.

    Google Scholar 

  64. L. McLinden, An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem, Pacific J. Math. 88 (1980) 101–161.

    Google Scholar 

  65. L. McLinden, The complementarity problem for maximal monotone multifunctions, in:Variational Inequalities and Complementarity Problems, eds. R.W. Cottle, F. Giannessi and J.L. Lions (Wiley, New York, 1980) pp. 251–270.

    Google Scholar 

  66. N. Megiddo, Pathways to the optimal set in linear programming, in:Progress in Mathematical Programming: Interior and Related Methods, ed. N. Megiddo (Springer, New York, 1989) pp. 131–158.

    Google Scholar 

  67. N. Megiddo, On finding primal- and dual-optimal bases, ORSA J. Comput. 3 (1991) 63–65.

    Google Scholar 

  68. N. Megiddo, Switching from a primal-dual Newton algorithm to a primal-dual (interior) simplex-algorithm, Technical Report RJ 6327, IBM Almaden Research Center, San Jose, CA (1988).

    Google Scholar 

  69. N. Megiddo and M. Shub, Boundary behavior of interior point algorithms in linear programming, Math. Oper. Res. 14 (1987) 97–114.

    Article  Google Scholar 

  70. S. Mehrotra, On finding a vertex solution using interior point methods, Lin. Alg. Appl. 152 (1991) 233–253.

    Article  Google Scholar 

  71. S. Mehrotra, Finite termination and superlinear convergence in primal-dual methods, Technical Report 91-13, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (1991).

    Google Scholar 

  72. S. Mehrotra, Quadratic convergence in a primal-dual method, Technical Report 91-15, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (1991).

    Google Scholar 

  73. S. Mehrotra and Y. Ye, On finding the optimal face of linear programs, Technical Report 91-10, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (1991).

    Google Scholar 

  74. S. Mizuno, M.J. Todd and Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear programming, Technical Report No. 944, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY (1991), to appear in: Math. Oper. Res.

    Google Scholar 

  75. D.D.C. Monteiro, On the continuous trajectories for a potential reduction algorithm for linear programming, Math. Oper. Res. 17 (1992) 225–253.

    Article  Google Scholar 

  76. D.D.C. Monteiro, Convergence and boundary behavior of the projective scaling trajectories for linear programming, Contemp. Math. 114 (1991) 213–232.

    Google Scholar 

  77. D.D.C. Monteiro and I. Adler, Interior path-following primal-dual algorithms, Part I: Linear programming, Math. Progr. 44 (1989) 27–41.

    Article  Google Scholar 

  78. D.D.C. Monteiro, I. Adler and M.G.C. Resende, A polynomial-time primal-dual affine scaling algorithms for linear and convex quadratic programming and its power series extension, Math. Oper. Res. 15 (1990) 191–214.

    Article  Google Scholar 

  79. J. Renegar, A polynomial-time algorithm, based on Newton's method, for linear programming, Math. Progr. 40 (1988) 59–93.

    Article  Google Scholar 

  80. C. Roos and J.-Ph. Vial, A polynomial method of approximate centers for linear programming, Math. Progr. 54 (1992) 295–305.

    Article  Google Scholar 

  81. A. Schrijver,Theory of Linear and Integer Programming (Wiley, New York, 1986).

    Google Scholar 

  82. D.F. Shanno, private communication (1991).

  83. H.D. Sherali, B.O. Skarpness and B. Kim, An assumption-free analysis of the scaling algorithm for linear programs, with application to theL 1 estimation problem, Naval Res. Log. Quarterly 35 (1988) 473–492.

    Article  Google Scholar 

  84. Gy. Sonnevend, An “analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, in:Lecture Notes in Control and Information Sciences, vol. 84, eds. A. Prékopa, J. Szelezsán and B. Straziczki (Springer, New York, 1985) pp. 866–876.

    Google Scholar 

  85. K. Tanabe, Centered Newton method for mathematical programming, in:Proc. 13th IFIP Conf., eds. M. Iri and K. Yajima (Springer, Berlin, 1988) pp. 197–206.

    Google Scholar 

  86. K. Tanabe, Centered Newton method for nonlinear programming (in Japanese), in: Proc. Inst. Statist. Math. 38 (Tokyo, 1990) 119–120.

    Google Scholar 

  87. K. Tanabe and T. Tsuchiya, Global analysis of dynamical systems associated with Karmarkar's method for linear programming, in:Proc. Annual Meeting of the Operations Research Society of Japan, Chigasaki, Japan (1987) pp. 132–133.

    Google Scholar 

  88. R. A. Tapia and Y. Zhang, A fast optimal basis identification technique for interior point linear programming methods, Technical Report 89-1, Department of Mathematical Sciences, Rice University, Houston, TX (1989).

    Google Scholar 

  89. R.A. Tapia and Y. Zhang, An optimal basis identification technique for interior point linear programming algorithms, Lin. Alg. Appl. 152 (1991) 343–363.

    Article  Google Scholar 

  90. T. Terlaky and S. Zhang, A survey of pivot rules for linear programming, Ann. Oper. Res. 46 (1993), this volume.

  91. M.J. Todd, Improved bounds and containing ellipsoids in Karmarkar's linear programming algorithm, Math. Oper. Res. 13 (1988) 650–659.

    Article  Google Scholar 

  92. M.J. Todd and B. Burrell, An extension of Karmarkar's algorithm for linear programming using dual variables, Algorithmica 1 (1986) 409–424.

    Article  Google Scholar 

  93. M.J. Todd and Y. Ye, A centered projective algorithm for linear programming, Math. Oper. Res. 15 (1990) 508–529.

    Article  Google Scholar 

  94. P. Tseng and Z.Q. Luo, On the convergence of the affine-scaling algorithm, Math. Progr. 52 (1992) 301–319.

    Article  Google Scholar 

  95. T. Tsuchiya, Global convergence property of the affine scaling methods for primal degenerate linear programming problems, Math. Oper. Res. 17 (1992) 527–557.

    Article  Google Scholar 

  96. T. Tsuchiya, Global convergence of the affine scaling methods for degenerate linear programming problems, Math. Progr. 52 (1991) 377–404.

    Article  Google Scholar 

  97. T. Tsuchiya, Quadratic convergence of Iri and Imai's algorithm for degenerate linear programming problems, Research Memorandum No. 412, The Institute of Statistical Mathematics, Tokyo, Japan (1991), to appear in: J. Optim. Theory Appl.

    Google Scholar 

  98. T. Tsuchiya, A study on global and local convergence of interior point algorithms for linear programming (in Japanese), Ph.D. Thesis, Faculty of Engineering, The University of Tokyo, Tokyo, Japan (1991).

    Google Scholar 

  99. T. Tsuchiya and M. Muramatsu, Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems, Research Memorandum 423, The Institute of Statistical Mathematics, Tokyo, Japan (1992).

    Google Scholar 

  100. T. Tsuchiya and K. Tanabe, Local convergence properties of new methods in linear programming, J. Oper. Res. Soc. Japan 33 (1990) 22–45.

    Google Scholar 

  101. R.J. Vanderbei and J.C. Lagarias, Dikin's convergence result for the affine-scaling algorithm, Contemp. Math. 114 (1990) 109–119.

    Google Scholar 

  102. R.J. Vanderbei, M.S. Meketon and B.A. Freedman, A modification of Karmarkar's linear programming algorithm, Algorithmica 1 (1986) 395–407.

    Article  Google Scholar 

  103. J.E. Ward and R.E. Wendell, Approaches to sensitivity analysis in linear programming, Ann. Oper. Res. 27 (1990) 3–38.

    Article  Google Scholar 

  104. C. Witzgall, P.T. Boggs and P.D. Domich, On the convergence behavior of trajectories for linear programming, Contemp. Math. 114 (1990) 161–187.

    Google Scholar 

  105. M.H. Wright, Interior point methods for constrained optimization, in:Acta Numerica, ed. A. Iserles (Cambridge University Press, New York, 1992) pp. 341–407.

    Google Scholar 

  106. H. Yamashita, A polynomially and quadratically convergent method for linear programming, Technical Report, Mathematical Systems Inc., Shinjuku, Tokyo, Japan (1986).

    Google Scholar 

  107. Y. Ye, Karmarkar's algorithm and the ellipsoid method, Oper. Res. Lett. 6 (1987) 177–182.

    Article  Google Scholar 

  108. Y. Ye, Recovering optimal basis in Karmarkar's polynomial algorithm for linear programming, Math. Oper. Res. 15 (1990) 564–572.

    Article  Google Scholar 

  109. Y. Ye, AnO(n 3 L) potential reduction algorithm for linear programming, Math. Progr. 50 (1991) 239–258.

    Article  Google Scholar 

  110. Y. Ye, On the finite convergence of interior-point algorithms for linear programming, Math. Progr. Ser. B 57 (1992) 325–335.

    Article  Google Scholar 

  111. Y. Ye, O. Güler, R.A. Tapia and Y. Zhang, A quadratically convergentO(√nL)-iteration algorithm for linear programming, Technical Report 91-26, Department of Mathematical Sciences, Rice University, Houston, TX (1991), to appear in: Math. Progr.

    Google Scholar 

  112. Y. Ye and J. Kaliski, private communication (1991).

  113. Y. Ye and M. Kojima, Recovering optimal dual solutions in Karmarkar's polynomial algorithm for linear programming, Math. Progr. 39 (1987) 305–317.

    Article  Google Scholar 

  114. Y. Ye, R.A. Tapia and Y. Zhang, A superlinearly convergentO(√nL)-iteration algorithm for linear programming, Technical Report 91-22, Department of Mathematical Sciences, Rice University, Houston, TX (1991).

    Google Scholar 

  115. Y. Ye and M.J. Todd, Containing and shrinking ellipsoids in the path-following algorithm, Math. Progr. 47 (1990) 1–10.

    Article  Google Scholar 

  116. Y. Zhang, R. Tapia and J.E. Dennis, On the superlinear and quadratic convergence of primal-dual interior-point linear programming algorithms, SIAM J. Optim. 2 (1990) 304–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by a research fund of SHELL.

On leave from the Eötvös University, Budapest, and partially supported by OTKA No. 2116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güler, O., den Hertog, D., Roos, C. et al. Degeneracy in interior point methods for linear programming: a survey. Ann Oper Res 46, 107–138 (1993). https://doi.org/10.1007/BF02096259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096259

Keywords

Navigation