
HIGH LEVEL OPTIMIZATIONS IN COMPILING PROCESS

DESCRIPTIONS TO ASYNCHRONOUS CIRCUITS

GANESH GOPALAKRISHNAN� (ganesh@cs.utah.edu)

University of Utah

Dept. of Computer Science

Salt Lake City, Utah 84112

VENKATESH AKELLAy (akella@ece.ucdavis.edu)

Department of Electrical and Computer Engineering,

University of California,

Davis, CA 95616

Keywords: Asynchronous/Self-timed Systems, High Level Synthesis, High level optimizations

Abstract. Asynchronous/Self-Timed designs are beginning to attract attention as promising means of

dealing with the complexity of modern VLSI technology. In this paper, we present our views on why

asynchronous systems matter. We then present details of our high level synthesis tool SHILPA that can

automatically synthesize asynchronous circuits from descriptions in our concurrent programming language,

hopCP. We outline many of the novel features of hopCP and also sketch how these constructs are compiled

into asynchronous circuits, and then focus on the high level optimizations employed by SHILPA, including

concurrent guard evaluation and concurrent process decomposition.

�Supported in part by NSF Award MIP 8902558

yThe work reported here was part of this author's PhD dissertation work, and was supported by a

University of Utah Graduate Fellowship

1

1 Introduction

It has been pointed out by many researchers recently that asynchronous circuits|circuits

that do not employ global clocks|have a number of advantages over synchronous circuits

when it comes to building large and complex sequential systems [1, 2, 3, 4]. In this pa-

per, we summarize recent developments in asynchronous circuit design and then present our

high-level synthesis system, SHILPA1. We will focus on the high-level optimizations used

by SHILPA. High-level optimizations are similar to \
ow-graph level optimizations" in pro-

gramming language compilers [5]; they should not be confused with circuit level optimizations

which are similar to machine code optimizations.

Synchronous vs. Asynchronous Circuits

Synchronous circuits are employed virtually everywhere. They have a number of desirable

characteristics, some of which are the following. The clock period of a synchronous circuit is

chosen to be long enough to allow its combinational stages to settle down, thereby preventing

failures due to hazards. In asynchronous circuits, hazards can be mistaken for genuine signal

transitions. Hence, it is of paramount importance to eliminate hazards, for instance by

employing special purpose Boolean minimization procedures [6]. Synchronous circuits do

not have the overhead of handshaking. Very many simulation and testing techniques, as well

as Computer-Aided Design (CAD) tools, are available for them. Synchronous circuits also

have many shortcomings. Large synchronous circuits employ high frequency and low skew

global clocks, driving which can consume considerable amounts of power [7]. The design

of synchronous/asynchronous interfaces|for example, peripheral interfaces|must be done

with great care, for fear of inviting failure due to metastability [1].

There are many speci�c kinds of asynchronous circuits, some of which are: self-timed

circuits (those that generate completion signals), delay insensitive circuits (whose behavior

1System for the High-level synthesis of Process to Asynchronous circuits

2

is invariant over module- and wire-delays), and speed independent circuits (whose behavior

is invariant over module-delays, but not necessarily wire-delays). These distinctions depend

largely on the granularity of the circuit primitives. For example, a synchronous system that

communicates externally using handshake signals can be regarded as a self-timed component

in a larger context. Asynchronous circuits are attractive in many ways. To a large extent,

they allow one to focus on functionality and not on timing details. This makes the task

of high-level synthesis centered around asynchronous circuits much easier in many respects.

For example, there is no need to perform clock scheduling. Operations whose durations are

data dependent as well as I/O dependent can be more cleanly and e�ciently handled in the

asynchronous high level synthesis framework. Asynchronous circuits can also exhibit better

average case performance, unencumbered by clocking rules [8].

Despite these promises, many designers have have shunned away from asynchronous cir-

cuits. It is feared that asynchronous circuits are excessively larger than synchronous circuits.

Asynchronous circuits o�er the designer with even more freedom to explore the design space.

The designer has the choice of numerous concurrent algorithms to begin with; upon each

chosen algorithm, he can e�ect numerous high level optimizations; each lead to circuits to

which di�erent circuit level optimizations can be applied; �nally, each speci�c circuit has its

own \best suited" circuit design style; and, all these tasks are inter-related. For instance, if

an addition operation is used in a thread whose average execution time should be kept low,

carry-completion addition would be a viable alternative. This may, in turn suggest a DCVSL

CMOS style implementation with its own associated transistor sizing rules. Without ade-

quate design space exploration support tools, this added freedom o�ered by the asynchronous

style can be a burden for the designer.

It is hoped that many of these limitations of asynchronous circuits can be overcome very

soon through additional research. Many of the early failures involving asynchronous circuits

can now be avoided through careful design [9] or veri�cation [10]. Area overheads are be-

3

coming less severe, especially if a slight increase in area can actually buy reduced design

time. Recently, there have been many convincing demonstrations of the practicality of large

asynchronous designs [11, 12]. Many high-level [11, 13, 14, 15] and low-level synthesis tools

[16, 17, 18] have been developed.

The clean separation between \synchronous", and \asynchronous" systems has already

begun to blur. Mixed synchronous/asynchronous circuits [19, 20], Q-modules [21], locally

clocked asynchronous systems [18], and the \asynchronous style" synchronous control net-

works used in Olympus [22] are indicative of this trend. Whichever course the hardware

design community may ultimately follow, it seems inevitable that asynchronous design will

play an increasing role as time goes by. Based on this assumption, we are justi�ed in taking

the approach of studying asynchronous designs in isolation, in this paper.

Context and Motivation for our work

A prominent category of e�orts in asynchronous design deals with compiling behavioral

descriptions in high-level languages based on the communicating sequential process paradigm

into asynchronous circuits. In these e�orts, asynchronous design is viewed as concurrent pro-

gramming, where the computation to be implemented is expressed in a high-level concurrent

HDL. This approach is more suitable for system level synthesis. This is in contrast to the

works of [23, 24], as well as more recent works of [25, 10, 9, 26], which are more suited for

low level synthesis and veri�cation of asynchronous state machines.

Our system, SHILPA, belongs to the former category. To the best of our knowledge,

systems similar to ours that have been fully implemented and tried out in practice are those

by Brunvand [14], van Berkel [27, 13], and by Martin and Burns [11, 28]. Improvements

in SHILPA over these works are primarily the following. hopCP, the source language for

SHILPA, is more expressive than Martin's input language `CHP', Brunvand's version of

`Occam', or van Berkel's language `Tangram'. We use a class of annotated Petri net-like
ow

graphs (called hopCP
ow graphs, or HFGs) as our intermediate form. This intermediate

4

form is very amenable to
ow-analysis. Optimizations for resource sharing can be easily

carried out on HFGs. Life-time analysis for variable reuse is also easy to carry out on HFGs.

A tool called Concur [29], that can determine if two actions are serially ordered or not, could

be developed fairly easily, thanks to the HFG based notation. Concur is central to many of

the optimizations performed by SHILPA. The HFG based intermediate representation also

helps in smoothly integrating all the SHILPA tools (a compiled code simulator, Concur, and,

in future, performance evaluation tools). SHILPA compiles circuits by taking each action in

the HFG and rewriting it to a normal form HFG (NHFG) fragment (to be explained later)

as well as the associated resources; this graph rewriting based compilation keeps the SHILPA

compiler modular, easier to understand, and (it is hoped) easy to verify (in future). Flow

analysis based optimizations, a common intermediate form for a variety of asynchronous

design tools, and compilation through graph rewriting have not been addressed before in

asynchronous high level synthesis.

There are two classes of approaches for realizing asynchronous circuits in hardware: Boolean

gate based, and macromodule based. Asynchronous macromodules implement functions such

as rendezvous, arbitration, procedure call and return, and control merging. Many approaches

using macromodules view the given design problem as a concurrent programming problem|

more speci�cally, one of mapping a given concurrent program into an interconnection of

macromodules. There are also many e�orts in which macromodules are used directly for

realizing state machines (i.e. for low level synthesis). Some examples are [25, 9]. Some of

these distinctions are also rapidly blurring, with the use of complex gates that directly realize

multi-input multi-output Boolean functions as macromodules. In SHILPA, macromodules

are the target of compilation, at present. Our set of macromodules were originally developed

by Brunvand [30] using the Actel �eld programmable gate arrays (FPGAs); we have made

numerous extensions to this cell set.

5

Organization

In Section 2, we brie
y sketch the syntax and semantics of hopCP. In Section 3, we

illustrate SHILPA on a two-stage pipeline. In Section 4, we examine concurrent guard

evaluation in some detail. In Section 5, we present an example of parallel decomposition,

a useful technique for obtaining pipelined designs. Concluding remarks are provided in

Section 6.

2 hopCP System Overview

Syntax

A hopCP description consists of one or more sequential processes composed in parallel

(using the k operator). Two sequential processes are shown in Figure 1. through HFGs

as well as using a textual notation. A sequential process is one or more process de�nitions

composed in series (using the ; operator), such that for every process call, there is a cor-

responding process de�nition. Each sequential process shown in Figure 1 consists of two

process de�nitions each. The processes de�ned are P, Q, R, and S.

A process de�nition consists of a choice node annotated with a process name and a list of

formal parameters. Arcs lead o� from the choice node (a \circle") to one or more alternative

transitions that are annotated with actions. These actions are commonly known as guards.

Arcs lead o� from the guards to nodes that perform process calls.

The left-most process de�nition de�nes process P that has two formal parameters x and

y. (We will use the words process and state synonymously.) The guards of P are a?z and

b?x. These actions belong to the category data input. These transitions are, in turn, followed

by the process calls Q[x+1, f(y), z-x] and P[x+y, y-x]. Note that every process call has

a corresponding process de�nition in the same sequential process. When a process call is

made, the actual parameters are passed by value.

6

action ::= ch?
 | ch!
 | ch?var
 | ch!exp
 | var := exp
 | (action1, ... , actionP)

; input synchronization
; output synchronization
; data input
; data output
; assignment
; compound action. . . .

P[var, ... ,var]

P1[Exp, ... ,Exp] Pm[Exp, ... ,Exp]

action action

ACTIONDEFINITION FOR "P"

P[x,y]

b?x

| exp ; expression action

a?z

P[x+y, y-x]Q[x+1, f(y), z-x]

Q[x1,y1,z1]

P[x1, x1+ dsvar]

; ||

R[x2]

odd(x2)

R[x2+1] S[]

;

S[]

Process Definitions

~odd(x2)

AN ABBREVIATION:

T[x] U[x+1]

U[x] T[x-1]

T[x]a?x

b!x+1

a?x

b!(x+1)+1T[x+1-1]

R[dsvar+1]

Sequential Processes

(c?, d!x1+y1) (b!dsvar+1)

(P[x,y] = a?z -> Q[x+1, f(y), z-x]

| b?x -> P[x+y, y-x]

; Q[x1,y1,z1] = (c?, d!(x1+y1)) -> P[x1, x1+dsvar]

)

|| (R[x2] = odd(x2) -> R[x2+1]

| ~odd(x2) -> S[]

; S[] = b!(dsvar+1) -> R[dsvar+1]

)

Figure 1: Overview of hopCP

7

IN T

F

PREDICATE
ACTION
BLOCK

req1 ack1 req2 ack2... reqn ackn

request

Data
Input

pred

transition
here if
pred(data)

transition
here if
~pred(data)

arbiter
cell1

arbiter
cell2

arbiter
celln

request

Figure 2: Predicate Action Block and Ring-style Arbiter

The guard of process Q is the compound action (c?, d!(x1+y1)). A compound action can

appear as a guard if it is the only guard of a choice node. (Further restrictions on hopCP's

guards are noted later.) This guard requires the input synchronization action c? and the data

output d!(x1+y1) to be both �nished before the process call to P is made. All the constituent

actions of a compound action must be disjoint, i.e., must not share channels, registers, or

other resources, so that they may run in parallel without interference. Compound actions

are useful for specifying a collection of primitive actions to be done in parallel. They are

also very useful for specifying the compilation rules of SHILPA which break up high level

actions into collections of simpler actions that can be done concurrently.

The guards of process R are the expression actions odd(x2) and �odd(x2). These form

Boolean guards that decide where control passes from state R[x2]. We encourage designers to

specify Boolean guards in a mutually exclusive manner using the form formula and �formula,

as this situation arises very frequently. It compiles such guards using predicate action blocks

(Figure 2). A predicate action block evaluates pred(data) and steers the request transition

to either the T (if pred(data)) or the F (if �pred(data)) output. If SHILPA does not �nd

the pattern \formula" and \�formula," it assumes that the Boolean guards are not mutually

exclusive, and uses an arbiter to select one of the true Boolean guards (Figure 2). We use the

ring-style arbiter from [30] which functions (roughly) as follows: after a request is applied,

a token is circulated within the arbiter; more than one reqi input may be asserted at any

8

time; one of these requests is acknowledged. In general, arbiters occupy more area to realize

than predicate action blocks. They also use circuits such as the interlock [2] that cannot be

realized in many technologies, such as most of today's FPGAs. (Note: The FPGA realization

in [30] is only an approximation, to permit rapid prototyping.)

The di�erent categories of variables, channel names, and their scoping rules, are as follows.

Variables can either be local to a process de�nition (e.g., x,y are local to P), or declared to

be globals (in this example, dsvar has been declared as a global variable). Variables used in

data input actions (e.g., z) are local to the process de�nition in which they appear; their

scope begins at the data input action and lasts till the ensuing process call. Channel names

are local to a sequential process. Global variables can be shared across process de�nitions

as well as sequential processes. Other comparable description languages disallow sharing

global variables across parallel threads for a good reason: they have no tool support to

determine if global variable accesses can be potentially concurrent. In hopCP, we allow

such shared variables because (a) it has been our common observation that many real world

systems frequently communicate over shared registers (or busses); (b) procedure Concur

can determine whether two actions in an HFG are serially ordered or potentially concurrent.

Using Concur, all accesses to global variables can be checked and made sure that they are

serial. (Notes: The serial ordering itself is imposed by the synchronizations between the

sequential processes.)

Algorithm Concur works as follows. When invoked with two actions a and b as arguments,

Concur �rst composes the sequential processes into one HFG by merging transitions that can

rendezvous. Then it performs a reduction of the HFG by removing places and transitions

in such a way that the causal orderings between a and b are una�ected. Then, Concur

performs reachability analysis on the reduced HFG, to determine all the reachable markings.

It then checks whether there exists a marking y such that the union of the preconditions of

a and b is a subset of y, but the intersection of the preconditions of a and b is empty; if so,

9

actions a and b are potentially concurrent; if not, these actions are serial. Concur assumes

that all Boolean guards are true. Therefore, although it can tell that only one guard will be

picked, it cannot tell which one will be picked. Hence, its results are pessimistic. Despite

this caveat, in practice, we �nd that it is relatively easy to determine whether two actions

are serially ordered or not. Though its worst case complexity is exponential in the HFG size,

Concur has performed reasonably fast on many practical examples.

A commonly used notational abbreviation is as follows: if a process de�nition has only one

reference (i.e., only one process calls the process being de�ned), then it is possible to in-line

substitute the process de�nition in place of the process call. This abbreviation is illustrated

on an example consisting of two process de�nitions for T and U that are mutually recursive.

Here, process U has exactly one reference, while process T has two references, because it

is also the initial state. We can eliminate an explicit de�nition for process U. The textual

syntax for this abbreviated de�nition would be (after simpli�cations):

T[x] = a?x -> b!x+2 -> T[x]

Informal Execution Semantics

The informal execution semantics of the example in Figure 1 are as follows (the formal

semantics of hopCP are given in [31]). Suppose the execution is begun at P and R. These

processes begin their execution concurrently. Process P �rst makes a choice between the

guards a?z and b?x. This alternative (\choice") command has the same meaning as in CSP-

like languages. For example, if action a?z is to take place, a matching action of the form

a!exp must also be enabled in another sequential process; in this case, a?z and a!exp are said

to rendezvous, whereupon the value of exp gets bound to z. In our example, the data input

action b?x of P is matched by the data output action b!(dsvar+1) of S; a matching action

for a?z is not shown. Input and output synchronization actions are value-less counterparts

of data input and data output, respectively.

10

In hopCP, data output follows the multicast semantics: a data output action such as

b!(dsvar+1) can rendezvous with more than one data input action that uses the same channel.

For example, suppose that three concurrent processes P1; P2 and P3 attain a state in which

P1 o�ers action b!(dsvar+1), while P2 and P3 o�er b?v and b?x, respectively. According to

the multicast semantics, P2 can proceed as soon as b!(dsvar+1) is o�ered by P1; likewise,

P3 can proceed as soon as b!(dsvar+1) is o�ered by P1. However, P1 can proceed only after

both b?x and b?v have been o�ered by P2 and P3, respectively.

Valueless communication actions in hopCP follow the barrier synchronization semantics:

an output synchronization action such as e! can synchronize with more than one e? action

in as many sequential processes. In this case, all the actions e? as well as the single e! action

must wait for each other and proceed only after they all have been enabled.

A designer may use barrier synchronization when \time alignment" is called for. Since,

in hopCP, interactions between concurrent threads can occur through value assignments on

global variables (as noted earlier) or through rendezvous, it makes a semantic di�erence

whether barrier synchronization is followed or multicast. In addition, the e�ect of multicast

can be obtained even for valueless communications, by suitably \faking" a value communi-

cation (for example, following the syntax e!nullvalue and e?ignore).

The availability of barrier synchronization as well as multicast o�ers considerable
exibility

in specifying system level behavior, as we have shown through numerous large examples,

notably the speci�cation of the high level protocols obeyed by Intel 8251 USART [32]. These

constructs are also useful for specifying concurrent algorithms [33]. These features of hopCP

are absent from comparable languages that are used for asynchronous high level synthesis.

Coming back to process P, consider a situation in which the communication actions a?z

and b?x can arrive potentially concurrently. In this situation, an arbiter would be used to

pick one of these communications (for example, as in [14]). However, if it can be determined

(using Concur) that these actions are mutually exclusive, SHILPA compiles a circuit using

11

the concurrent guard evaluation technique. This technique also uses a circuit that is smaller

and easier to realize than an arbiter. This is one of the high level optimizations to be

discussed later.

Coming back to the guards of P, if action b?x is chosen, the existing value of x is overwritten

during the data input action b?x. Then, control goes back to P through a process call P[x+y,

y-x], when the current value of x gets replaced by the value of x+y and the value of y by the

value of y-x. Note that this particular process call P[...] cannot have used variable z in its

actual parameter expressions because z is visible only in the scope of action a?z.

If guard a?z of P is chosen for execution, control reaches process Q. In the process, formal

parameters x1,y1,z1 are bound to the values of expressions x+1, f(y), z-x, respectively. Pro-

cess Q performs a compound action; i.e., it waits for the input synchronization c? and the

data output d!(x1+y1) to both �nish before it engages in the process call P[x1, x1+dsvar].

While the value of the global variable dsvar is being acquired during the computation of

expression x1+dsvar, dsvar must not be concurrently changed by another process. We can

determine whether this is the case, using Concur. The execution semantics of processes R

and S are similar. Process R involves Boolean guards that are mutually exclusive. If control

passes to S, it performs the data output which can synchronize with action b?x of process P.

Notice the common subexpressions dsvar+1 in process S. Currently SHILPA cannot avoid

recomputing dsvar+1; however, this optimization can be incorporated in a straightforward

way, as done in standard compilers. However, SHILPA can be made to do resource sharing:

for example, since the two uses of `+' are in the same process de�nition, the designer can

request SHILPA to share the adder, if he/she so desires. The two invocations of add used

in process de�nitions Q and S can be shared only if they are guaranteed to occur serially.

Again, Concur can be used to determine if these two usages are always serial or not.

12

Restrictions on Guards

Guards in hopCP have to obey a number of restrictions. These restrictions help in many

ways: they help avoid potentially dangerous situations (e.g. deadlocks). They also help in

obtaining e�cient circuits without compromising the expressive power too much. Some of

the restrictions on guards are now listed. If a compound action is used as one of the guards,

it must be the only guard going out of the choice node. Similarly, if a data output action

is one of the guards, it must be the only guard going out of the choice node. Also, if an

assignment action is one of the guards, it must be the only guard going out of the choice

node. Two guards must not use the same input channel. All input channels used in guards

must be point-to-point: in other words, broadcast or multicast channels should not be used

in guards. The guards associated with a choice node may consist of expression actions,

data input actions, and input synchronization actions. During execution, however, all the

expression actions are examined before any of the non-expression actions within guards are

examined.

Summary of Features

To sum up, our work makes a number of advances over comparable works. hopCP has

been designed for supporting the speci�cation of large hardware systems at a high level. It

is more expressive than the HDLs used in comparable works. Although Martin [11] also

makes the distinction between mutually exclusive and non-exclusive \guards", his approach

is slightly di�erent. In Martin's approach, an input guard is turned into a input probe

which is then made part of the Boolean guard. We do not use probes in hopCP for several

reasons. First, we believe that not having probes keeps the HDL simple. Second, many

of the proposed uses of probes can be replaced by corresponding uses of global variables.

The synthesis systems developed by Martin, van Berkel, or Brunvand do not support
ow

analysis or sharing analysis. Last, but not the least, we have built an integrated design

system that includes a
ow analyzer, an e�cient compiled code simulator, and a high level

13

synthesis system. It generates circuits ready for implementation in Actel FPGAs, supported

by Viewlogic tools.

3 Overview of SHILPA

SHILPA generates transition style circuits using bundled data, as presented in [1]. We

illustrate SHILPA through the design of a two-stage pipeline:

(P[x] = a?y -> b!(x+y) -> P[y])

||

(Q[z] = b?z -> c!z -> Q[z])

The top-level command in SHILPA for compiling this speci�cation is function compile. This

function �rst turns the textual description of hopCP into HFGs. The HFG for the pipeline

is shown below in textual form:

HFG for Process P HFG for Process Q

1 precondition :{s__3[x,y]} 1 precondition :{s__5[z,z]}

actions :(b!(x + y)) actions :(c!z)

postcondition :{P[y]} postcondition :{Q[z]}

2 precondition :{P[x]} 2 precondition :{Q[z]}

actions :(a?y) actions :(b?z)

postcondition :{s__3[x,y]} postcondition :{s__5[z,z]}

Each action in the HFG is then re�ned into simpler actions which consist of signal transitions

on allocated resources. This results in NHFGs, which were introduced in Section 1. For

process Q, the NHFG is as follows:

14

1 precondition :{START[]} 4 precondition :{s__5[]} 7 precondition :{s__42[]}

actions :(start??) actions :(c_out!!) actions :(REG_14_ld!!)

postcondition :{Q[]} postcondition :{s__37[]} postcondition :{s__43[]}

2 precondition :{s__37[]} 5 precondition :{s__41[]}

actions :(c_in??) actions :(C_12_out??)

postcondition :{Q[]} postcondition :{s__42[]}

3 precondition :{Q[]} 6 precondition :{s__43[]}

actions :(C_12_in1!!) actions :(REG_14_ldack??)

postcondition :{s__41[]} postcondition :{s__5[]}

Actions that end with two question marks are input signal transitions that are awaited. Ac-

tions that end with two exclamation marks are output signal transitions that are generated.

For example, C 12 in1!! is a signal transition generated on input in1 of c-element num-

ber 12. Notice that the allocated resource instances for process Q include one c-element

and one register. SHILPA can explain why each resource is being allocated, in the following

form:

C_12:data assert for b!(x + y) REG_5:argument for AB_4_arg1

C_13:data query for a?y REG_6:argument for AB_4_arg2

REG_3: datapath for x FAB_4:2 for (x + y)

REG_14:query var for z REG_7:result for 4

REG_10:const for y CTREE_8:2 for AB_4_arg2 <- y

One example from this printout, FAB 4:2 for (x + y), explains that function action block

(FAB) number 4, of arity 2 has been allocated to support (x+y). Control circuitry is now

generated in SHILPA by detecting shared resources|resources that are triggered from two

di�erent places. In the pipeline, there are no shared resources. Next, excess registers are

eliminated based on user's interactive commands. For example, users may like to retain

result registers to function blocks, so as to share the results of evaluating common subex-

pressions. Retaining registers can also help pipeline the evaluation of nested expressions

(e.g. (x+(y+z)+w)).

15

MC

C
A

B
OUT

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

B[7:0]

REQ

ACK

A[7:0]

CLR

COUT

DOUT

SUM[7:0]

2phadder8

B

A
XOR

Y

B

A
XOR

Y

MC

C
A

B
OUT

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

START

FAB_4_DOUT

FAB_4_COUT

C_OUT

C_IN

CLR

A_OUT

A_IN
IN8[7:0]

IN3[7:0]

C_DATA[7:0]

B_DATA[7:0]

A_DATA[7:0]

Figure 3: A Two Stage Pipeline

Sometimes, result registers have to be retained to prevent combinational loops from form-

ing. For instance, if value of the actual parameter expression in process Q is z+1, then the

result of z+1 is held in a result register and then only loaded back to z. Detection of these

situations is straightforward (though not automated at present).

After eliminating the desired number of registers, an abstract netlist can be generated:

connect(XOR_19_out,C_12_in1) connect(REG_7_ld,FAB_4_+ack) connect(REG_10_out,REG_3_in)

connect(XOR_18_out,C_13_in1) connect(C_12_out,REG_14_ld) connect(REG_14_in,b_data)

connect(REG_10_ldack,FAB_4_+) connect(start,XOR_19_in2) connect(REG_7_ldack,C_12_in2)

connect(REG_7_in,FAB_4_out) connect(REG_3_ldack,XOR_18_in2) connect(REG_3_out,FAB_4_in1)

connect(REG_10_in,a_data) connect(REG_10_out,FAB_4_in2) connect(start,XOR_18_in1)

connect(REG_14_out,c_data) connect(REG_7_out,b_data) connect(REG_10_ldack,a_out)

connect(REG_14_ldack,REG_3_ld) connect(C_13_in2,a_in) connect(C_13_out,REG_10_ld)

connect(REG_14_ldack,c_out) connect(c_in,XOR_19_in1)

16

delay

delay

C

C

XOR

XOR

A_IN

B_IN

XOR

START

A_OUT

B_OUT

Figure 4: Circuit for the Concurrent Evaluation of Mutex Guards

SHILPA checks whether this netlist is structurally well-formed (for example, whether two

outputs are connected together, etc.); this check is redundant (but quite re-assuring). Then

it technology maps the netlist, currently to Actel FPGAs.

The resulting circuit is shown in Figure 3. The circuit works as follows. First CLR

is lowered to reset the components. Then START is applied. This \arms" both the c-

elements, which then await A IN as well as B IN. When A IN comes from the external

world, the lower C-element �res. It causes the lower reg8 module (variable y) to store the

data coming through the A DATA port. The acknowledge signal of this register is forked to

A OUT as well as starts the addition of x (held in the upper reg8 module) and y. Completion

of this addition triggers the upper C-element, thus �nishing the synchronization involved

with b?z. This causes the rightmost reg8 (variable z) to be loaded, thus �nishing the data

acquisition part of b?z. Finally, C OUT is generated, register x gets loaded with the value

of y, and process P is resumed. Process Q is resumed by the arrival of C IN.

4 Concurrent Guard Evaluation

We shall illustrate concurrent guard evaluation through process P given below:

P[] = a? -> P[] | b? -> P[]

17

Assume that Concur has determined that a? and b? are mutually exclusive. SHILPA then

generates the circuit shown in Figure 4. Here, A IN and A OUT are the handshake lines for

channel a? while B IN and B OUT are for b?. The circuit is started by applying a transition

on START. This, in turn, puts transitions (through the XORs) into the inputs of both c-

elements. Depending on whether an A IN or a B IN transition comes, that c-element

�res. For example, if A IN comes, the upper c-element �res. It �rst subjects the lower XOR

to another transition, which results in the bottom input of the lower c-element seeing two

successive transitions. This c-element is therefore reset. Following this (the delay ensures

this), control is returned back to the top XOR.

The circuit comprising the lower two XORs, the two Cs and the two delays actually forms

a 2 � 1 cal component [9] (�rst introduced by Molnar). An M � 1 cal component can

be considered to be a generalized c-element. It has inputs a1; : : : ; aM and b, and outputs

c1; : : : ; cM . In any cycle of operation, a transition is received on exactly one of the ai inputs

and on b; the M � 1 cal then produces a transition on ci. The circuit in Figure 4, with

the cal sub-circuit treated as a primitive (a \black-box"), belongs to the family of delay

insensitive circuits.

A natural question at this stage is why we synthesize a cal component each time, and not

use a library primitive for a cal component. The answer is given by the following example:

P[] = a? -> b? -> P[] | b? -> a? -> P[]

In this example, after engaging in an a? action, P engages in a b? action (and after a

b?, it does an a?). There are two invocations of the synchronous input action on channel

a? (and likewise on b?). The usual semantics of channels requires that these invocations

share the same resources (c-elements, and handshake wires, in our case). Usually this is

achieved by using a call module [1].

18

delay

delay

START

R1

A1

R2

A2

RS
AS

R1

A1

R2

A2

RS
AS

XOR1

XOR2

C1

C2

XOR3
CALL1

CALL2

B_IN

A_IN

B_OUT

A_OUT

Figure 5: Mutually Exclusive Guards with Sharing

Coming back to our example, assuming that the guards are mutually exclusive, SHILPA

generates the circuit shown in Figure 5. The circuit works as follows. After CLR, when

START is applied, both the call elements make a \procedure call" onto the c-elements

through the respective R2 inputs. Suppose A IN happens �rst; then C2 �res. It generates

A OUT and also returns the \call" through AS and A2 of CALL2. This transition �rst triggers

XOR1 through its lower input. This causes another R2 on CALL1.

We have selected the CALL implementation of [30] in which the sequence R1; R1 causes a

sequence RS; RS (and likewise R2; R2 also causes RS; RS), and in addition, the CALL element

is reset at the end of this sequence. Therefore, CALL1 is reset by the two R2 transitions it sees.

Since the R2; R2 sequence causes an RS; RS sequence at the output of CALL1, c-element

C1 also gets reset!

The value of delay must be large enough to make sure that this resetting happens before

a call is made through the A1 input of CALL1.

Though the generated circuit is large, the situation shown is fortunately rare. Thus,

in most instances, we will have to generate a circuit similar to that in Figure 4; in those

circumstances, we can indeed use a library cal component.

19

The purpose of presenting this example was to demonstrate (a) how non-obvious the

interactions between features|for example concurrent guard evaluation and sharing|can

be; (b) to show that by imposing one-sided delay constraints, often \clever" designs can

be obtained. As discussed in Section 2, Martin's implementation of mutually exclusive

guards uses probes and hence may avoid some of the di�culties we are facing. However,

an exact comparison is not possible between our approach and Martin's approach, because

we synthesize two-phase transition style circuits (which have a large number of desirable

characteristics [1]) while Martin synthesizes four-phase (level based) circuits.

5 Concurrent Process Decomposition

It is easy to come up with iterative speci�cations for many computations. We have iden-

ti�ed a useful heuristic for implementing iterative computations through concurrent process

decomposition. Concurrent process decomposition is a very convenient way to achieve soft-

ware pipelining. To make this clear, consider the iterative speci�cation of a multiplier:

MULT[x, y, z] = (isZero y) -> result!z -> MULT[x, y, z]

| (not (isZero y))

-> (odd y) -> MULT[x, (y-1), (z+x)]

| (not (odd y)) -> MULT[(lshift x),(rshift y),z]

Notice that the value of the actual parameter z+x is not needed until the corresponding

formal parameter, z, is used in the body of MULTF. Also notice that z is used only in certain

threads; while (not (odd y)) is true, this updated value of z is not needed! (The situation

(not (odd y)) being true for many iterations can happen if the number being multiplied

has a string of 0s in it.) Thus, holding up the recursive invocation of MULT till (z+x) has

�nished computing can be wasteful in time.

A modi�ed MULT algorithm can take advantage of this situation. Expressing such algorith-

mic modi�cations in traditional sequential HDLs (e.g., VHDL) can be tricky. Fortunately,

20

a CSP-style language is very expressive in this regard because, using rendezvous style com-

munications, the desired interactions between various threads of computation can be conve-

niently speci�ed. Note that concurrent decomposition, as we propose here, is di�erent from

Martin's process decomposition, which essentially only gives the ability to call a subroutine

and return to the place of call|and not spawn two concurrent threads as we do.

The modi�ed speci�cation is as follows:

MULTPIPE [x, y] = (isZero y) -> sz! -> MULTPIPE [x, y]

| (not (isZero y))

-> (odd y) -> azx!x -> MULTPIPE [x, (y-1)]

| (not (odd y)) -> MULTPIPE [(lshift x),(rshift y)]

||

PZ[z] = sz? -> result!z -> PZ[z]

| azx?x1 -> PZ[x1+z]

We �rst factor out variable z from MULT, and make it a local variable of a new process PZ.

PZ's role is to treat variable z as an abstract data type object, allowing it to be accessed

only through two operations: operation sz that stands for \send z", and operation azx

that stands for \add z to x". These operations can be conveniently implemented through

rendezvous communications sz? and azx?x respectively. Notice that the second rendezvous

communication involves data x that is sent from MULT to PZ. The operation of MULTPIPE is

as follows. If (not (isZero y)) and (odd y), it sends x to PZ and immediately goes back

to state MULTPIPE. While (not (isZero y)) and (not (odd y)), it ignores PZ, allowing it

to complete the previous add operation, if any. When z is needed inside MULTPIPE (occurs

when (isZero y) is true), MULTPIPE orders PZ to send the value of z through the channel

result. This process transformation achieves the e�ect of software pipelining. We show

the results of compiling process PZ in Figure 6. We do not show the rest of the circuit

to conserve space. Process PZ has been compiled to take advantage of concurrent guard

evaluation because it is clear (as was checked using Concur also) that the guards sz? and

azx?x1 are mutually exclusive. Process PZ functions as follows. Upon receiving START, a

21

Delay-2IN OUTMC

C
A

B
OUT

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

B[7:0]

REQ

ACK

A[7:0]

CLR

COUT

DOUT

SUM[7:0]

2phadder8

Delay-2IN OUT

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

MC

C
A

B
OUT

B

A
XOR

Y

B

A
XOR

Y

B

A
XOR

Y

IN70

IN75

AZX_IN

AZX_OUT

CLR

FAB_7_COUT

FAB_7_DOUT

RESULT_OUT

IN68

IN66

SZ_IN

IN70

IN75
IN68

IN66

START

AZX_DATA[7:0]

IN64[7:0]

IN67[7:0]

IN71[7:0]

RESULT_DATA[7:0]

Figure 6: Process PZ of the Multiplier

transition is injected into IN68 and IN70. These, in turn, arm the two C-elements to look

for request transitions on SZ IN and AZX IN. If AZX IN is triggered, the bottom C-element

is �rst reset; then, AZX DATA is loaded into the bottom reg8 module. Its acknowledgement

starts the addition and also generates AZX OUT. When the addition �nishes, the results

of addition are �rst loaded into the result register (top-left reg8), and then transferred into

register z (top-right reg8) before restarting process PZ.

We are currently studying the process of semi-automating concurrent process decomposi-

tion in SHILPA [34]. Until we have tool support for concurrent process decomposition, we

believe that this technique can still be applied manually without too much trouble.

22

Circuit Number of Viewlogic Modules

SHILPA VHDLDes

1 Micropipeline with processing (2 Stages) 418 822

2 Iterative Multiplier (Non-Pipelined) 1176 1353

3 GCD (Euclid's Algorithm) 895 999

Figure 7: Comparative Study of Circuits Produced by SHILPA and VHDLdes

6 Concluding Remarks

In this paper, we have tried to demonstrate that asynchronous VLSI design can be greatly

facilitated by designing a high level synthesis system that uses an expressive HDL and

incorporates numerous optimizations. We have detailed such a system in this paper. It

is well known that writing and debugging concurrent programs is di�cult without tool

support. The hopCP notation avoids many of the possible pitfalls in writing concurrent

(HDL) programs by o�ering many high level descriptive mechanisms. To facilitate design

debugging, the hopCP system o�ers CFSIM, a compiled code functional simulator, and

Concur, a
ow analyzer. hopCP also allows low level hardware features, such as global

variables, to be used in hardware descriptions, and such usages checked for safety using

Concur. Last, but not the least, SHILPA tries to keep the designer fully informed about its

actions, and allows the designer to in
uence the �nal circuit in many ways, through many

interactive commands.

Unit-delay simulation of the pipelined multiplier showed that despite its pipelined nature,

it will run slower than its non-pipelined counterpart! The reason is that the `+' operation

�nishes too soon, thereby not allowing the `+' to overlap in any signi�cant way with other

operations. However, with other examples, we have actually observed signi�cant speed-

ups due to pipelining. As is clear from these examples, the main problem we are facing

23

currently is in performance estimation. In our experience, a high level synthesis framework

for asynchronous circuits o�ers the designer with even more freedom to explore the design

space. Tool support for conducting design space exploration in this manner is sorely missed

in SHILPA; but that is exactly what we will begin working on, next. At present, we have

synthesized many small circuits using the SHILPA system. Sizes of SHILPA generated

circuits seem to compare favorably with the results produced by one VHDL synthesis system

that generates synchronous circuits (the VHDLDesigner tool of the Viewlogic family was fed

VHDL descriptions obtained through hand-translation of hopCP descriptions), Figure 7.

These results, though by no means de�nitive, are at least reassuring.

Acknowledgements: SHILPA was developed as part of the PhD dissertation work of the

second author, partly supported by a University of Utah Fellowship. The �rst author was

supported through NSF award MIP 8902558.

References

1. Ivan Sutherland. Micropipelines. Communications of the ACM, June 1989. The 1988 ACM

Turing Award Lecture.

2. C. A. Mead and L. Conway. An Introduction to VLSI Systems. Addison Wesley, 1980. Chapter

7, entitled \System Timing".

3. John Brzozowski and Carl-Johan Seger. Advances in Asynchronous Circuit Theory: Part I:

Gate and Unbounded Intertial Delay Models; and Part II: Bounded Intertial Delay Models,

MOS Circuits, Design Techniques. Technical report, University of Waterloo, 1990.

4. Ganesh Gopalakrishnan and Prabhat Jain. Some recent asynchronous system design method-

ologies. Technical Report UUCS-TR-90-016, Dept. of Computer Science, University of Utah,

Salt Lake City, UT 84112, 1990.

5. Alfred Aho, Ravi Sethi, and Je�rey Ullman. Compilers, Principles Techniques and Tools.

24

Addison-Wesley, 1986.

6. Steven Nowick and David Dill. Exact two-level minimization of hazard-free logic with multiple-

input changes. In Proceedings of the International Conference on Computer Aided Design

(ICCAD), pages 626{630, November 1992.

7. D. W. Dobberpuhl. A 200-MHz 64-b Dual-Issue CMOS Microprocessor. IEEE Journal of

Solid-State Circuits, 27(11):1555{1567, November 1992.

8. Ted E.Williams and Mark Horowitz. A zero-overhead self-timed 160ns 54bit cmos divider.

IEEE Journal of Solid State Circuits, 26(11):1651{1661, November 1991.

9. Jo C. Ebergen. Translating Programs into Delay Insensitive Circuits. Centre for Mathematics

and Computer Science, Amsterdam, 1989. CWI Tract 56.

10. David L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-independent

Circuits. MIT Press, 1989. An ACM Distinguished Dissertation.

11. Alain J. Martin. Programming in VLSI: From communicating processes to delay-insensitive

circuits. In C.A.R. Hoare, editor, UT Year of Programming Institute on Concurrent Program-

ming. Addison-Wesley, 1989.

12. Erik L. Brunvand. The NSR Processor. In T.N. Mudge, V. Milutinovic, and L. Hunter, editors,

Proceedings of the 26th Annual Hawaiian International Conference on System Sciences, Volume

1, pages 428{436, January 1993.

13. Kees van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI Programming.

Cambridge University Press, 1993. International Series on Parallel Computation.

14. Erik Brunvand. Translating Concurrent Communicating Programs into Asynchronous Circuits.

PhD thesis, Carnegie Mellon University, 1991.

15. Venkatesh Akella and Ganesh Gopalakrishnan. SHILPA: A High-Level Synthesis System for

Self-Timed Circuits. In International Conference on Computer-aided Design, ICCAD 92, pages

587{591, November 1992.

25

16. Al Davis, Bill Coates, and Ken Stevens. The Post O�ce Experience: Designing a Large Asyn-

chronous Chip. In T.N. Mudge, V. Milutinovic, and L. Hunter, editors, Proceedings of the 26th

Annual Hawaiian International Conference on System Sciences, Volume 1, pages 409{418, Jan-

uary 1993.

17. Tam-Anh Chu. Synthesis of hazard-free control circuits from asynchronous �nite state machine

speci�cations. TAU '92: 1992 Workshop on Timing Issues in the Speci�cation and Synthesis

of Digital Systems, Princeton, NJ, March 18{20, 1992.

18. Steven M. Nowick, Kenneth Y. Yun, and David L. Dill. Practical Asynchronous Controller

Design. In Proceedings of the International Conference on Computer Design, pages 341{345,

October 1992.

19. Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Depart-

ment of Computer Science, Stanford University, October 1984.

20. M.J.Stucki and J.R.Cox, Jr. Synchronization strategies. In Proceedings of the Caltech Confer-

ence on VLSI, pages 375{393, January 1979.

21. Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pein Fang. Q-modules:

Internally clocked delay-insensitive modules. IEEE Transactions on Computers, 37(9):1005{

1018, September 1988.

22. David Ku. Constrained Synthesis and Optimization of Digital Integrated Circuits from Behav-

ioral Speci�cations. PhD thesis, Department of Computer Science, Stanford University, June

1991.

23. Stephen H. Unger. Asynchronous Sequential Switching Circuits. John-Wiley, 1969.

24. Arthur D. Friedman. Fundamentals of Logic Design and Switching Theory. Computer Science

Press, 1986.

25. Jan Tijmen Udding. A formal model for de�ning and classifying delay-insensitive circuits and

systems. Distributed Computing, (1):197{204, 1986.

26

26. Mark B. Josephs. Receptive process theory. Acta Informatica, 29:17{31, 1992.

27. C. van Berkel, C. Niessen, M.Rem, and R.Saeijs. Vlsi programming and silicon compilation:

a novel approach from phillips research. In Proceedings of IEEE International Conference on

Computer Design (ICCD), 1988.

28. Steven M. Burns and Alain J. Martin. Synthesis of self-timed circuits by program transfor-

mation. In Proc. 1988 IFIP WG 10.2 International Working Conference on \The Fusion of

Hardware Design and Veri�cation", Univ. of Strathclyde, Glasgow, Scotland, pages 97{114, July

1988.

29. Venkatesh Akella and Ganesh Gopalakrishnan. Static analysis techniques for the synthesis of

e�cient asynchronous circuits. Technical Report UUCS-91-018, Dept. of Computer Science,

University of Utah, Salt Lake City, UT 84112, 1991. TAU '92: 1992 Workshop on Timing Issues

in the Speci�cation and Synthesis of Digital Systems, Princeton, NJ, March 18{20, 1992.

30. Erik Brunvand. A cell set for self-timed design using Actel FPGAs. Technical Report 91-013,

Dept. of Computer Science, University of Utah, Salt Lake City, UT 84112, 1991.

31. Venkatesh Akella. An Integrated Framework for High-Level Synthesis of Self-timed Circuits.

PhD thesis, Department of Computer Science, University of Utah, 1992.

32. Venkatesh Akella and Ganesh Gopalakrishnan. Speci�cation and validation of control intensive

ics in hopcp. Technical Report UUCS-92-001, Dept. of Computer Science, University of Utah,

Salt Lake City, UT 84112, 1991. Accept subject to revisions by the IEEE Transactions on

Software Engineering.

33. Arthur Charlesworth. The Multiway Rendezvous. ACM Transactions on Programming Lan-

guages and Systems, 9(3):350{366, July 1987.

34. Ganesh Gopalakrishnan and Venkatesh Akella. A Transformational Approach to Asynchronous

High-level Synthesis. In VLSI-93. IFIP, September 1993. To Appear.

27

