Skip to main content
Log in

Improved base station circular antenna array receiver for wireless CDMA systems

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

A Spatial interpolation technique for the upsampling of uniform circular arrays (UCAs), beyond spatial aliasing, is considered. The UCA interpolation algorithm is used as a preprocessing procedure in the reverse link to improve the performance of a cellular code division multiple access (CDMA) system. The motivation is to enhance the system's capacity and array resolution and reduce the fading and coupling effects with minimal receiver hardware and cost. At the base station, we propose to place the antenna elements uniformly on an imaginary circumference farther apart thanλ/2, whereλ is the free-space wavelength. The resulting UCA possesses superior resolution, less coupling effects than a corresponding UCA with the same number of elements and circumferential spacing less than or equal toλ/2, and possibly higher diversity gain. In order to increase the system's capacity and eliminate any spatial aliasing, we propose to interpolate the UCA to within the spatial Nyquist rate. This is achieved by placing a virtual antenna element halfway on the circumference between every two adjacent antenna elements. Simulations results are provided to support our claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Suard, A. F. Naguib, G. Xu, and A. Paulraj, Performance of CDMA mobile communications systems using antenna arrays,Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 4, pp. 153–156, 1993.

    Google Scholar 

  2. B. D. Woerner, J. H. Reed, and T. S. Rappaport, Simulation issues for future wireless modems,IEEE Communications Magazine, Vol. 34, pp. 42–53, 1994.

    Google Scholar 

  3. J. Liang and A. J. Paulraj, On optimizing base station antenna array topology for coverage extension in cellular radio networks,Proc. IEEE Conf. Veh. Technol., pp. 866–874, 1995.

  4. M. T. Ma,Theory and Application of Antenna Arrays, Wiley, New York, 1974.

    Google Scholar 

  5. J. D. Parsons and J. G. Gardiner,Mobile Communication Systems, Blackie, London: 1989.

    Google Scholar 

  6. D. Swingler, Line-array beamforming using linear prediction for aperture interpolation and extrapolation,IEEE Trans. on Acoust., Speech, Signal Processing, Vol. 37, pp. 16–30, 1989.

    Google Scholar 

  7. D. R. Morgan, Interpolation and extrapolation of an ideal bandlimited random process,IEEE Trans. Acoust., Speech, Signal Processing, Vol. 35, pp. 43–47, 1987.

    Google Scholar 

  8. B. Friedlander, Direction finding using an interpolated array,Proc. Int. Conf. Acoust. Speech Signal Processing, Vol. 5, pp. 2675–2678, 1990.

    Google Scholar 

  9. B. Friedlander, and A. J. Weiss, Direction finding using spatial smoothing with interpolated arrays,IEEE Trans. Aerosp. Electron. Syst., Vol. 28, pp. 574–587, 1992.

    Google Scholar 

  10. A. J. Weiss and B. Friedlander, Direction-of-arrival estimation using MODE with interpolated arrays,IEEE Trans. Acoust., Speech, Signal Processing, Vol. 43, pp. 296–300, 1995.

    Google Scholar 

  11. A. J. Weiss and B. Friedlander, Performance analysis of spatial smoothing with interpolated arrays,IEEE Trans. Acoust., Speech, Signal Processing, Vol. 41, pp. 1881–1892, 1993.

    Google Scholar 

  12. P. Kawala,Adaptive Multiple-Beam Antenna Arrays for Indoor Wireless Communications, M.S. thesis, Carleton University, Ottawa, Ontario, Canada, 1992.

    Google Scholar 

  13. C. P. Mathews and M. D. Zoltowski, Eigenstructures techniques for 2D angle estimation with uniform circular arrays,IEEE Trans. Signal Processing, Vol. 42, pp. 2395–2407, 1994.

    Google Scholar 

  14. S. Haykin,Communication Systems, 2nd ed., Wiley, New York, 1983.

    Google Scholar 

  15. A. H. Tewfik and W. Hong, On the application of uniform linear array bearing estimation techniques to uniform circular arrays,IEEE Trans. Signal Processing, Vol. 40, pp. 1008–1011, 1992.

    Google Scholar 

  16. M. Wax and J. Sheinvald, Direction finding of coherent signals via spatial smoothing for uniform circular arrays,IEEE Trans. Antennas Propagation, Vol. 42, pp. 613–620, 1994.

    Google Scholar 

  17. R. A. Monzingo and T. W. Miller,Introduction to Adaptive Arrays, Wiley, New York, 1980.

    Google Scholar 

  18. S. Haykin,Adaptive Filter Theory, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  19. D. N. Swindler and R. S. Walker, Line array beamforming using linear prediction for aperture interpolation and extrapolation,IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, pp. 16–30, 1989.

    Google Scholar 

  20. S. Alexander and G. Pulgliese, Cordless communications within buildings: results of measurements at 900 MHz and at 60 GHz,British Telecom Tech. J., pp. 99–105, 1983.

  21. D. Whipple, The CDMA standard,Appl. Microwave Wireless, pp. 24–37, 1994.

  22. M. Kawabe, T. Kato, A. Kawahashi, T. Sato, and A. Fukasawa, Advanced CDMA scheme based on interference cancellation,Proc. IEEE Conf. Veh. Technol., Secaucus, NJ, pp. 448–451, 1993.

  23. J. C. Liberti, Jr. and T. S. Rappaport, Analytical results for reverse channel performance improvements in CDMA cellular communication systems employing adaptive antennas,IEEE Trans. Veh. Technol., Vol. 43, pp. 691–699, 1994.

    Google Scholar 

  24. R. G. Pridham and R. A. Mucci, Digital interpolation beamforming for low-pass and bandpass signals,Proc. IEEE, Vol. 67, pp. 904–919, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouphael, T.J., Cruz, J.R. Improved base station circular antenna array receiver for wireless CDMA systems. Int J Wireless Inf Networks 3, 187–194 (1996). https://doi.org/10.1007/BF02109334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02109334

Key words

Navigation