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plane (1) that minimizes a weighted average of the sum of the distances of the misclassi�ed pointsto the plane [7, 2] as follows:minw;
;y;z (eT ym + eTzk j Aw + y � e
 + e; Bw � z � e
 � e; y � 0; z � 0) (3)Here the rows of the matrices A 2 Rm�n and B 2 Rk�n represent the m points in A and the kpoints in B respectively, while e is a vector of ones of appropriate dimension. The objective functionof (3) represents the sum of the average distances, multiplied by kwk, of the misclassi�ed pointsin A to the plane xTw = 
 + 1 and of the misclassi�ed points of B to the plane xTw = 
 � 1.If the convex hulls of A and B are disjoint, then there are no misclassi�ed points and the linearprogram (3) yields a zero minimum. However in the general case of intersecting convex hulls, thelinear program (3) obtains an approximate separating plane that minimizes an average sum ofdistances of misclassi�ed points as described above. However this criterion for discrimination maynot minimize the actual number of the misclassi�ed points. The problem of constructing a plane(1) such that the number of misclassi�ed points is minimized, is considerably more di�cult and infact is NP-complete, as shown in Proposition 2 of Section 2 below. This problem was consideredin [8], where a parametric minimization approach was proposed and implemented in [1]. Althoughthe parametric procedure is e�ective, it is costly computationally, which is to be expected since theunderlying problem is NP-complete. In the present approach we shall propose a fast alternativehybrid criterion that is quite e�ective in approximately minimizing the number of misclassi�edpoints as determined by tenfold cross-validation [15]. The basic idea is to minimize the numberof misclassi�ed points by translating the separating plane, and then rotating the plane in orderto minimize a weighted average sum of the distances of misclassi�ed points to a separating plane.This hybrid separability criterion leads to an e�ective �nite algorithm for solving the separationproblem.We outline the contents of the paper now. In Section 2 we de�ne the misclassi�cation minimiza-tion problem (7), and establish the NP-completeness of the equivalent problem (8) in Proposition2. We then de�ne our Hybrid Misclassi�cation Minimization (HMM) Problem 3 and establish theexistence of a global solution to it in Theorem 4, and prescribe a �nite hybrid algorithm, HMM Al-gorithm 5, for its approximate solution. Section 3 contains numerical results that indicate that theproposed hybrid algorithm is fast and appears to generalize better than the parametric algorithmmisclassi�cation minimization [1].A word about our notation now. For a vector x in the n-dimensional real space Rn; x+ willdenote the vector in Rn with components (x+)i := max fxi; 0g; i = 1; : : : ; n: Similarly x� willdenote the vector in Rn with components (x�)i := (xi)�; i = 1; : : : ; n , where (�)� is the stepfunction de�ned as one for positive xi and zero otherwise. The norm k � k will denote the l2 norm,while A 2 Rm�n will signify a real m�n matrix. For such a matrix, AT will denote the transpose,and Ai will denote row i. For two vectors x and y in Rn, x ? y will denote xTy = 0. A vector ofones in a real space of arbitrary dimension will be denoted by e: The notation arg minx2S f(x) willdenote the set of minimizers of f(x) on the set S. Similarly argKKT minx2S f(x) will denote the setof minimizers and corresponding Lagrange multipliers of the Karush-Kuhn-Tucker conditions forminx2S f(x) . By a separating plane, with respect to two given point sets A and B in Rn, we shallmean a plane that attempts to separate Rn into two half spaces such that each open halfspacecontains points mostly of A or B . The cardinality of a set A will be denoted by card(A). Thesymbol \ := " de�nes a quantity appearing on its left by a quantity appearing on its right.2



2 The Hybrid Misclassi�cation Minimization ProblemWe begin by de�ning the \pure" misclassi�cation minimization problem as in [8] with the help ofthe step function (�)�. For the two �nite point sets A and B in Rn, represented respectively byA 2 Rm�n and B 2 Rk�n, we need to �nd a plane xTw = 
 such that as many as possible of thefollowing inequalities are satis�ed: Aw > e
; Bw < e
: (4)Upon normalization, this is equivalent to satisfying as many as possible of the following inequalitiesAw � e
 + e; Bw � e
 � e: (5)Thus, we wish to minimize the number of misclassi�ed points by the plane xTw = 
. This problemcan be stated as the following misclassi�cation minimization problemminw;
 eT (�Aw + e
 + e)� + eT (Bw � e
 + e)�: (6)In [8, 1] this problem was reformulated as a linear program with equilibrium constraints (LPEC)[6], that is a linear program with a single complementarity constraint. An implicitly exact penaltymethod as well as a parametric method were proposed for solving the LPEC in [8] and successfullyimplemented in [1]. Although e�ective, the parametric approach is costly, because for each valueof the parameter, a nonconvex bilinear program need to be solved. We propose here an alterna-tive hybrid approach that is considerably faster and which appears to generalize better than theparametric approach.The basic idea of the hybrid approach is to use two criteria for obtaining (w; 
) 2 Rn+1 thatcharacterizes the separating plane xTw = 
. More speci�cally, for a �xed 
 we solve the linearprogram (3) to determine w. Then for this w we solve a one-dimensional minimization problem (6)in 
 to minimize the number of misclassi�ed points. The process is repeated until no improvementin the number of misclassi�ed points is possible. We term such a point as a stationary point. Theidea of using di�erent criteria to determine di�erent parts of the solution (w; 
) is similar to thatof �nding equilibrium points [13] and solving multicriteria optimization problems [14].Before de�ning precisely our problem, we slightly modify the misclassi�cation minimizationproblem (6) as follows: minw;
 eT (e� (Aw � e
)�) + eT (e� (�Bw + e
)�) (7)We note that while (6) counts the number of violated normalized inequalities (5), the minimizationproblem (7) counts the number of violated un-normalized inequalities (4). In fact (7) is equivalentto maximizing the number of satis�ed inequalities in (4), that ismaxw;
 eT (Aw � e
)� + eT (�Bw + e
)� (8)We note further, as in the case of robust linear programming separation [2] achieved by the linearprogram (3), when the null solution (w; 
) = (0;�1) 2 Rn+1 gives a maximum value of maxfm; kgfor (8), then it is never unique in w. This is because any plane wTx = 
, with w 6= 0 will alsoachieve the same maximum by placing the appropriate set A or B in one of the open halfspacesit generates. This is a useful property of (8), otherwise the null solution w = 0 would pose acomputational di�culty similar to that addressed in [2].3



If we now assume that A and B have integer entries, then problem (8) belongs to the followingclass of problems which, we will show, is NP-complete.1. Maximum Inequality Satis�ability (MIS). Let the matrix H 2 Rp�q have integer entries.Find the maximum number of satis�able inequalitiesHx > 0; (9)where x is a vector of q rational numbers.Note that in (9), H plays the role of the matrix " A �e�B e # of (4). We now show that thisproblem is NP-complete.2. Proposition The MIS Problem 1 is NP-complete.Proof The NP-complete Open Hemisphere (OH) Problem [4, page 246, problem MP6] is theproblem of determining whether, for a positive integer r � p, r of the inequalities Hx > 0 can besatis�ed by a rational vector x.We �rst show that MIS is in NP by reducing it to at most two instances of OH which is in NP.If we are given an integer r � p, then we can decide whether it is a solution of MIS as follows. Theinteger r is a solution of MIS if and only if r is a solution of OH and r+ 1 is not a solution of OHwhen r+1 � p. Since OH is in NP and checking whether r solves MIS can be performed by solvingat most two instances of OH, it follows that MIS is in NP.Now we show that MIS is NP-hard by reducing OH to an instance of MIS. Given a positiveinteger r, we solve MIS and obtain �r for its maximum. The integer r solves OH if and only if r � �r.We note that Heath's NP-completeness result [5, Appendix C] is for a di�erently stated problemthan ours. In particular, Heath minimizesminfcardfi j Aiw > 
ig; cardfi j Biw > 
igg+ minfcardfi j Aiw < 
ig; cardfi j Biw < 
iggWe believe that our measure of misclassi�cation minimization as given in the (MIS) Problem 1 issimpler and more direct than Heath's.In order to avoid the solution of the NP-complete problem (8), we replace it by the followingproblem, that is more tractable computationally: Translate the plane xTw = 
 by varying 
 sothat it that maximizes the number of correctly classi�ed points, where the plane orientation w hasbeen determined by a rotation that minimizes a weighted average sum of distances of misclassi�edpoints to the plane. This results in the following hybrid misclassi�cation minimization problem.3. Hybrid Misclassi�cation Minimization (HMM) Problem. Find ( �w; �
) 2 Rn+1 thatdetermine the plane xT �w = �
, such that �w = �w(�
) and�
 2 argmax
 f(
) := argmax
 eT (Aw(
)� e
)� + eT (�Bw(
) + e
)� (10a)such that w(
) 2 argminw eTm (�Aw + e
 + e)+ + eTk (Bw � e
 + e)+ (10b)We note that for each 
 2 R, the subproblem (10b) is equivalent to the linear program (3) with�xed 
. Because this linear program is feasible and its objective is bounded below by zero, it alwayshas a solution. Hence the objective function f(
) of the HMM Problem (10a) is well de�ned. Weshow now that f(
) attains a maximum for some �
 2 R.4



4. Theorem Existence of Solution to the HMM Problem 3 For any A 2 Rm�n; B 2 Rk�n,the HMM Problem 3 has a solution ( �w; �
) 2 Rn+1.Proof We observe �rst that f(
), as de�ned in (10a) is bounded above by m+ k. Hencesup
 f(
) = � <1:Since f(
) takes on integer values only, it follows that � is an integer. Hence, there exists a �
 suchthat f(�
) > � � 12 , and hence f(�
) = � and consequently�
 2 argmax
 f(
):We state now our algorithm for solving the HMM Problem 3.5. The Hybrid Misclassi�cation Minimization (HMM) Algorithm.Initialization(w0; 
�1; y0; z0) 2 arg minw;
;y;zfeTm y + eTk z j Aw + y � e
 + e; Bw � z � e
 � e; y; z � 0g (11)Iteration
i 2 argmax
 g(wi; 
) := argmax
 eT (Awi � e
)� + eT (�Bwi + e
)� (12)Stop if g(wi; 
i) � g(wi�1; 
i�1) (13)wi+1 2 argminw h(w; 
i) := argminw eTm (�Aw + e
i + e)+ + eTk (Bw � e
i + e)+ (14)Note that the �rst subproblem (12) of the HMM algorithm is a one dimensional problem with a�nite number of objective function values that lie in the set f0; 1; � � � ; m+ kg and is easily solvedby a line search procedure. The second subproblem (14) is equivalent to the initialization linearprogram (11) with 
 �xed at 
 = 
i.Although the HMM Algorithm does not necessarily solve the HMM Problem 3, it does termi-nate very quickly after two to �ve iterations at a solution that is about as good as that obtainedby the more complex parametric misclassi�cation algorithm [8, 1]. Furthermore the HMM Algo-rithm appears to generalize better than the parametric algorithm, as indicated by the numericalcomputations given in the next section.We state now a �nite termination result for the HMM Algorithm 5.6. Finite Termination of the HMM Algorithm The HMM Algorithm 5 terminates in a �nitenumber of steps at a stationary point (w�i�1; 
�i�1) satisfying the stopping criterion (13).Proof Since the sequence fg(wi; 
i)g is in the �nite set f0; 1; � � � ; m + kg, it cannot increase in-de�nitely. Hence at some iteration �i, it must satisfy the stopping criterion (13) and the HMMAlgorithm 5 terminates.We note that the stopping criterion (13) leads to a stationary point (w�i�1; 
�i�1) in the sensethat g(w�i�1; 
�i�1) = maxi��i max
 g(wi; 
). In the real world problems solved in the next section, such apoint seems to be as good as that obtained by a more complex and costly algorithm, and generalizesbetter. 5



3 Numerical Computation and ComparisonsWe report now on numerical results on the Wisconsin Breast Cancer Database (WBCD) and otherdata sets from the Irvine Machine Learning Database Repository [10] as well as the Star/Galaxydatabase collected by Odewahn [12] and the Wisconsin Breast Cancer Prognosis Database [9, 16].For each data set, a separating plane was obtained by three methods: the parametric misclas-si�cation minimization (PMM) procedure of [8, 1], the HMM Algorithm 5 of Section 2, and therobust linear program (RLP) algorithm [2], that is the linear program (3). In order to measurehow well each separating plane generalizes to unseen data, we performed tenfold cross-validation oneach data set [15]. Speci�cally, we divided each data set into ten equal parts, obtained a separatingplane for the combined nine parts (training) and tested the correctness of the plane (generalization)on the tenth set. The percent generalization correctness for each data set was an average of thecorrectness over the ten di�erent subsets used for training and testing. The time reported was theaverage time for the ten di�erent subsets used for training.The parametric misclassi�cation minimization procedure was coded in the modeling languageAMPL [3] in [1] utilizing the MINOS [11] linear programming solver. The HMM Algorithm andthe robust linear program algorithm were implemented using C and called MINOS as a subroutineto solve the linear programs.Table 1 gives a summary of the numerical results. To address the possibility that the reportedCPU times might be biased against AMPL, because of the overhead involved when AMPL calls theMINOS solver, we have also included another comparative criterion: the average number of LPssolved by each method. We make the following additional observations.(i) Testing set correctness:HMM highest in 5 out of 10 casesRLP highest in 3 out of 10 casesPMM highest in 2 out of 10 cases(ii) Training set correctness:PMM highest in all 10 cases(as expected, since PMM maximizes this quantity)HMM second highest in all 10 casesRLP lowest in all 10 cases(iii) Computing time:RLP fastest all 10 cases. Total time 12.08 seconds (as expected, since it solves a single LP)HMM same order of time as RLP. Total time 32.54 secondsPMM slowest in all 10 cases. Total time 1600.18 seconds(iv) Average of average number of LPs solved:RLP constant of 1HMM average of 2.32PMM average of 22.3 6



Table 1. Comparison of Hybrid Misclassi�cation Minimization (HMM) with ParametricMisclassi�cation Minimization (PMM) [8, 1] & Robust Linear Programming (RLP) [2]m Training Set CorrectnessDate Set k Testing Set Correctnessn Time Seconds SPARCstation 20Average LPs SolvedHMM PMM RLP28 89.12 95.92 84.343WBC Prognosis 119 72.24 71.33 66.04832 0.71 10.65 0.5012.1 13.8 1239 97.87 98.57 97.73WBCD 443 97.36 96.47 97.219 0.64 24.65 0.212 15.6 1216 87.50 91.43 84.47Cleveland Heart 81 82.84 82.16 83.5114 0.41 17.67 0.222 26 1225 96.56 98.42 94.90Ionosphere 126 88.36 87.52 86.0934 1.46 27.26 0.982.1 14 1145 72.21 74.85 68.99Liver Disorders 200 66.64 68.37 66.936 0.43 18.51 0.282.1 28.8 1268 78.42 80.55 76.77Pima Diabetes 500 75.89 76.67 76.008 1.51 51.40 0.754.4 40.4 12082 95.98 96.52 95.64Star/Galaxy(Dim) 2110 95.63 95.42 95.5114 19.73 1122.70 6.892.1 37.4 11505 99.68 99.89 99.62Star/Galaxy(Bright) 957 99.23 99.19 99.3914 4.95 266.13 0.872 8.1 1626 68.93 69.12 62.75Tic Tac Toe 332 66.16 64.50 60.239 2.11 46.45 1.162.2 26.9 1168 98.03 98.82 97.45Votes 267 95.62 94.01 95.6316 0.59 14.76 0.222.2 12 17



4 ConclusionWe have introduced a fast hybrid misclassi�cation minimization algorithm for minimizing the num-ber of misclassi�ed points by a plane attempting to separate two given sets in Rn. The algorithmessentially solves two to �ve linear programs to determine the orientation of the separating planeand translates the plane to minimize the number of misclassi�ed points. The algorithm is simpleand robust and appears to be a very promising tool for machine learning.AcknowledgementWe are grateful to Kristin P. Bennett and Erin J. Bredensteiner for making available to us theirAMPL program for the PMM algorithm for comparison purposes.References[1] K. P. Bennett and E. J. Bredensteiner. A parametric optimization method for machine learning.Department of Mathematical Sciences Report No. 217, Rensselaer Polytechnic Institute, Troy,NY 12180, 1994.[2] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of twolinearly inseparable sets. Optimization Methods and Software, 1:23{34, 1992.[3] R. Fourer, D. Gay, and B. Kernighan. AMPL. The Scienti�c Press, South San Francisco,California, 1993.[4] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory ofNP{Completeness. W. H. Freeman and Company, San Francisco, 1979.[5] David Heath. A geometric Framework for Machine Learning. PhD thesis, Department ofComputer Science, Johns Hopkins University{Baltimore, Maryland, 1992.[6] Z.-Q. Luo, J.-S. Pang, D. Ralph, and S.-Q. Wu. Exact penalization and stationarity conditionsof mathematical programs with equilibrium constraints. Technical Report 275, Communica-tions Research Laboratory, McMaster University, Hamilton, Ontario, Hamilton, Ontario L8S4K1, Canada, 1993. Mathematical Programming, to appear.[7] O. L. Mangasarian. Multi-surface method of pattern separation. IEEE Transactions on In-formation Theory, IT-14:801{807, 1968.[8] O. L. Mangasarian. Misclassi�cation minimization. Journal of Global Optimization, 5:309{323,1994.[9] O. L. Mangasarian, W. Nick Street, and W. H. Wolberg. Breast cancer diagnosis and prognosisvia linear programming. Operations Research, 43(4):570{577, July-August 1995.[10] P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. Depart-ment of Information and Computer Science, University of California, Irvine, California,http://www.ics.uci.edu/AI/ML/MLDBRepository.html., 1992.[11] B. A. Murtagh and M. A. Saunders. MINOS 5.0 user's guide. Technical Report SOL 83.20,Stanford University, December 1983. MINOS 5.4 Release Notes, December 1992.8



[12] S. Odewahn, E. Stockwell, R. Pennington, R. Hummphreys, and W. Zumach. Automatedstar/galaxy discrimination with neural networks. Astronomical Journal, 103(1):318{331, 1992.[13] H. E. Scarf. The Computation of Economic Equilibria. Yale University Press, New Haven,Conneticut, 1973.[14] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Application. JohnWiley and Sons, 1986.[15] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of theRoyal Statistical Society (Series B), 36:111{147, 1974.[16] W. H. Wolberg, W. N. Street, D. N. Heisey, and O. L. Mangasarian. Computer-derived nucleargrade and breast cancer prognosis. Analytical and Quantitative Cytology and Histology. Toappear.
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