COMPUTER STUDIES PUBLICATION Neo tr-a3-84

Technical Report

MULTIDISK FILE DESIGN :

AN ANALYSIS OF FOLDING BUCKETS TO DISKS

MY CHAN

CenTRE OF COMPUTER STUDIES AND APPLICATIONS

UN1versITY oF Hong Kone

PokruLaM Roap

_—'KU CDCD$E:3 Hone Kone

UNIVERSITY OF HONG KONG
LIBRARY

e
S

S50
W ===

NA

R

~ g

3 R
4
3

E

This book was a gift
from

Centre of Computer Studies
& Applications, HKU

FOREWORD

The present Technlical Report is the preliminary version of a
paper which is currently under consideration for publication
in a journal. Prior to acceptance and publication of the
paper, its copyright is vested in the author. As a courtesy
to its prospective publisher, copying of the Report should

be kept to the minimum essential requirement.

The 3ideas expressed in the Report represent those of the
author, and should not be taken as the official views of the
Centre or the University. Discussion of its contents and
request for additional copies should Le directed to the

author at the address shown on the cover.

C K Yuen

Director of Computer Studies

Multidisk File Design : An Analysis of Folding Buckets to Disks

by

Mee Yee Chan
Centre of Computer Studies and Applications

University of Hong Kong

Abstract

A technique called folding for mapping file buckets to multiple
disks is evaluated. In particular, an upper bound for expected
costs given any size partial match query is found. Folding is

compared sgainst Disk Modulo allocation.

Introduction

This paper relates to partial match retrieval for large,
on~line data files spread across several independently accessible
disks, a concern first introduced by Du and Sobolewski [1] as
having relevance for database information retrieval. The
problem in question is how should such files be arranged among
the disks to best facilitate queries, exploiting to the fullest
the concurrency of access on separate disks. We introduce an
arrangement technique called folding to tackle multidisk file
design under a binary framework, making rough comparisons with
Disk Modulo allocation [ﬂ] in an attempt to show folding as

viable.

The problem we wish to consider in this paper can be described
as follows. We are interested in three entities : buckets, disks,
and partial match queries. A bucket is a package of information,
each bucket keyed uniquely by a d-dimensional vector of O's and
1's. A partisl match query is a reguest to retrieve a set of
buckets, each query also denoted by a d-dimensional vector but of
O's, 1's, and *'s. Buckets which satisfy a query agree with the
query vector in positions having O or 1 with *'s representing
fdon't care" posgitions., A disk is a location to which we can
assign buckets, each disk addressed by a m-dimensional vector of
0's and 1's. A multidisk file design is a mapping of the Zd
buckets to the 2™ disks. The cost of a partial match query given
s multidisk design is the maximum of the number of buckets, which
satisfy the query, for each disk. The optimal (minimal)} cost for
a query with p *'s is fép'd]. The multidisk file design problem
involves the construction of a design which minimizes cost on

average over all possible partial match queries.

-4 -

As an example of the various terms just introduced,
consider the multidisk file designs shown in Figures 1 and 2
for d=6, m=%. Under the design of Figure 1, queries ******,
*0*1*0, and *0**11 yield costs of 20, 3, and 3, respectively,
whereas applyirg these queries to Figure 2 yields respective
costs of 8, 1, and 2. The query ****** is essentially a
request for all buckets. To obtain all buckets in the Figure 1
design, 1,6,15,20,15,6,1,0 buckets need be respectively gotten
from Disks 1 whrough 8; hence, a cost of 20 is incurred. In
the Figure 2 situation, 8 buckets per disk determine a cost of
8. Figures 3 and 4 explain the expense associated with *0*1*0
and *0**11. Note the optimality of the Figure 2 assignment

for ****** and *0*1*0.

Since any bucket key can be encoded into binary form and
binary partial match queries allow the user greatest flexibility
in specifying queries, our binary framework is noteworthy.
Unsurprisingly, Disk Modulo allocation performs its worst

for this problem.

An Anglysis of Disk Modulo

The problem of assigning buckets to disks to achieve the
best average performance is a difficult one to solve in general.
Past research has given us a heuristic in the form of Disk
Modulo allocation. Disk Modulo when applied to our multidisk
problen effectively maps buckets according to however many 1's
appear in the bucket vector; a bucket with i 1's finds itself
assigned to the (i mod 2% + 1)th disk. Figure 1 is, in fact,
an instance of the Disk Modulo technique. Rather awkward
mappings are seen to result where certain disks hold many more

buckets than others. Indeed, the following may be asserted.

-2 -

Lemma. When a Disk Modulo multidisk file design is used, any

partial match query with p *'s will cost at least <Y?§21> buckets.

Proof of Lemma. Given a p-* query, let q be the number of 1's

appearing in the query vector. To arrive at the buckets satisfy-~
ing such a query is essentially an exercise in replacing the *'s
with either O or 1. For example, query *0*1*Q asks for bucket
000100 gotten from replacing &ll 3 *'s by 0, dbuckets 000110,
001100, 100100 gotten from replacing exactly 2 *'s by 0, buckets
001110, 100110, 101100 gotten from replacing exactly 1 * by O,
and bucket 101110 gotten by substitution with no 0's (all 1's).

i
exactly (p-i) *'s with 0, all of which are located on the

In general, there are (é> buckets obtained by substituting

{(g+i)mod 2® + 1)th disk. Hence, for a m=3 disk environment,
buckets 000110, 001100, 100100 are sll found on Disk 3. Since

P\ /. P i
mgx (i) Qb/zﬁ , the maximum of the number of relevant buckets

for each disk is at least 05320 « The "at least" takes into
consideration cases where ((q+i)mod 2% + 1) = ((q+j)mod 20 + 1)

for some integers i,j, 1 # J and 0< i,J< p» O

An Analysis of Folding

The main idea of this paper is to investigate a method,
which we call "folding", as an slternative to Disk Modulo
allocation. The design of Figure 2 illustrates how buckets ars
folded to disks. The technique itself is actuslly borrowed from
the traditional hashing concept of folding : in mapping d~-bit
keys to m~-bit addresses, assuming d = km for some integer k,
the d~bit key is partitioned into k m-bit parts which sere added
together,ignoring any final carry, to obtain the necessary m~bit
address [3]. Hence, the steps for folding 6-bit bucket 100110
to a 3-bit address include adding 100 to 110 (in the binery sense)

-3 -

to obtain 1010 and ignoring carry to yield %-bit address 010
(Disk 3). Likewise, a 9=-bit bucket 010011101 invokes the
addition of 010, 011, 101 with a disregard of the resultant
carry to get a 3-bit address of 000 (Disk 1).

The main result of our analysis is given by the following
theorem.
Theorem. Let A{p) denote the expected cost over all queries
with p *'s (equally probasble) given a folded, m-bit disk address,
d-bit bucket key (d = km for some integer k) system. Then,

w {50 = 5 B E) e/

Proof of theorem. In proof we begin with the notion of cost

classes, A cost clasgss is a m~-bit vector that represents a set

of queries. A guery

911392+ * 9921922 * *%2n* = * 1 %k2* * * Yem
belongs to coat class 8 85ece8y
if and only if

3 x
1 if gt = for some 8
at? = y for t = 1,2,...,31.
0 otherwise
We prove two lemmas in conjunction with cost ¢lasses, the

first bounds the cost of p-* queries within a cost class and

the second enumerstes the number of p-* gueries within a class.

Lemma 1. In a folded multidisk design, any p-* query in cost

p-i ;
class 84850008, costs at most 2 whers i = 2;% 8y

- b4 -

Proof of Lemma 1. The argument is that any p-* query in cost

class a,85...8; can be answered by posing 2P gifferent i-*
queries, all of which have *'s in the same positions and belong
to 8485008, for i as defined by the lemma. To respond to
*0**11 for a d=6,m=3 folded design, we can pose *0*011 and *0*111
both of cost class 101, Further, any such i-* query can be
satisfied using a cost of 1. Thus, the cost expected for the
p-* query is at most 2p~i‘ Since one of the i-* requests may
require a particular disk be accessed while snothexr may not, we

may fare better than 2P"i, hence the "at most". ||

Lemma 2. The number of p-~* queries in cost class 84850008, is

i
a-p 0 (ci-j)d/") 3
2 %@ e) T

m
where i = ¥ _ ap .
t=

Proof of Lemma 2. We apply the principle of inclusion and

exclusion in proof [2] + Let {r,l,rz,...,ri be the set of

indices of cost class a ay...8y for which art w1 for t = 1,2 .00y

Consider the set S8 of p-* queries such that if qsr’* then
d-p {id/m .
T e{r1,r2,...,ri}. There are N = 2 (P) guerlaa in S.
Let Ar be the property that a query has q_, =* for no 8 and
t Bry

let AL be the propsrty that a query has q_, =* for some =,
t 8Ty

The notation N(X) denotes ths number of queries in S baving the

1ist of propertiea X. So N(Aé AL eee A%) denotes the number
1 "2 i
of queries in 8 with properties A£1'A£2’.."A£i and is-in fact

the number of p-* queries in cost class a,8,eeef .

-5 -

NCAL AL ee Al) x N - Z:j N(A_) +oaee 4+ (-4)1N(A A ...A)
1 T2

- o (L0

There are ad“P (;) p~-* queries altogethser. The upper bound
for expected costs of the theorem follows naturally from these

two lemmas.

Folding vs. Disk Modulo

Now that we have a bound on the expected cost for any size
query given a folding-based multidisk design, how viable is
folding? We conclude with the tabulations of Figures 5 and 6.
When compared with the lower bound of @32] for Disk Modulo,
the upper bound from the theorem is seen to be often less and
¢loger to optimal costs of (ép—ﬁl“ These numericsl comparisons,
unfortunately in the absenc¢e of definite relative cost statements,
suffice to render folding as a worthwhile approach to bucket-to-

disk file design.

References
1 He Co Du and J. S. Sobolewski. Disk allocation for Cartesian
product files on multiple-disk systems. ACM Trans. Database

Syst. 7, 1 (March 1982), pp. 82-101.

2 G+ L, Liu, Inbroduction to Combinatorisl Mathematics, McGraw-

Hill, New York, 1968.

3 J. P. Tremblsy and P. G. Sorenson, An Introduction to Data

Structures with Applications, McGraw-Hill, New York, 1976.

000

2
001

3
010

Iy
11

3
100

6
101

7
110

8
111

000000 000001

Buckets

Pigure 1. Disk Modulo

000010
000100
001000
010000
100000

000011
000101
000110
001001
001010
001100
010001
010010
010100
011000
100001
100010
100100
101000
110000

000111
001011
601101
001110
010011
010101
010110
011001
011010
011100
100011
100101
100110
101001
101010
101100
110001
110010
110100
111100

001111
010111
011011
011101
011110
100111
101014
101101
101110
110011
110101
110110
111001
111010
111100

011111
101111
110111
111011
111101
111110

111111

allocation of 6~bit buckets to 3-bit disks

Digk : 1
Q0%

2
001

3
010

&
011

5
102

6
101

7
110

8
111

000000
001111
010110
Buckets 011101
100100
101011
110010
111001

000001
001000
010111
011110
100101
101100
110011
111010

000010
001001
010000
011111
100110
101107
110100
111011

000011
001010
010001
011000
100111
101110
110101
111100

Pigure 2. Folding allocation of &6~bit

000100
001011
010010
011001
100000
101111
110110
111101

buckets

000101
001100
010011
011010
100001
101000
1104
111110

000110
001101

010100
011011

100010
101001
116000

111111

to 3-bit disks

000111
001110
10101
C11100
100011
101010
110001
111000

Disk : 1 2 3 4 5 6 7 8
000 001 Q10 011 100 101 110 111
000100 000110 001110 101110
001100 100110
100100 101100
(8)
Disk : 1 2 3 4 5 6 7 8
000 001 010 011 100 101 110 111
000011 000111 001111 101411
001011 100111
100011 101011
(v
Pigure 3. Relevant buckets for (a) *0*1*0 and (b) *0**11 from

the multidask design of Figure 1.

Disk : 1 2 3 3 5 6 7 8
000 001 010 011 100 101 110 111
100100 101100 100110 101110 000100 001100 000110 001110

(a)
Disk : 1 2 3 4 5 & 7 8
000 001 010 011 100 101 110 111
001111 000011 001011 000111
101011 100111 101111 100011
(®)
Figure 4. Relevant buckets for (a) *0*1*0 and (b) *0**11 from

the multidisk design of Figure 2.

(i) (i) [BE SR

g
o
k-]

2 4 1 1.00 1 1
2 4 2 1.33 2 1
2 4 3 2.00 3 2
2 4 4 4.00 a 4
2 & 1 1.00 1 1
2 é 2 1.40 2 1
2 6 3 2.20 3 2
2 & 4 4.00 & 4
2 & 5 8.00 10 8
2 & & 16.00 20 14
2 8 1 1.00 1 1
2 8 2 1.43 2 1
2 8 3 2.29 3 2
2 8 4 4.11 & 4
2 8] 8.00 10 8
2 8 & 16.00 20 16
2 8 7 32.00 35 32
2 8 8 64.00 70 64
z 10 1 1.00 1 %
z 1o 2 1.44 2 1
2 10 3 2.33 3 2
2 10 4 4.19 & 4
2z 10 5 8.06 10 8
2 10 & 16.00 20 16
z 10 7 32.00 35 32
z 10 8 64.00 70 &4
2 10 9 128.00 126 128
2 10 10 256.00 252 256
2 12 1 1.00 1 1
2 12 2 1.45 2 1
2 12 3 2.36 3 2
2 12 4 4.24 6 4
2 12 s 8.12 10 8
2 1z & 16.03 20 16
2 1z 7 32.00 35 32
2 12 8 64.00 70 &4
- 9 128.00 126 128
2 12 10 256.00 252 256
2 12 11 512.00 462 512
2 12 12 1024.00 924 1024

Figure 3. Folding vs. Disk Modulo @
{1) upper bound for expected cost for folding

{11} lower bound for expected cost for Disk Modulo
(iii)optimal cost

as described in the paper.

m d =} (i) tii) (iii)
3 é 1 1.00 1 1
3 6 2 1.20 2 i
3] 3 1.60 3 1
3 é 4 2.40 6 2
3) S 4.00 10 4
3] L) 8.00 20 8
3 9 1 1.00 1 1
3 4 2 1.23 z i
3 v 3 1.75 3 1
3 2 4 2.71 & 2
3 g b 4,57 10 4
3 14] B8.29 20 8
3 14 7 16.00 33 1é6
3 14 a8 32.00 70 32
3 ? b4 64.00 126 &4
3 12 1 1.00 1 1
3 12 2 1.27 2 1
3 12 3 1.82 3 b
3 12 4 2.84 é 2
3 1z] 4.85 10 49
3 12 & 8.73 20 8
3 12 7 16.48 35 1é
3 12 8 32.19 70 32
3 12 ? 64.00 126 &4
3 12 10 128.00 252 128
3 12 11 256.00 462 256
2 12 12 512.00 924 512
3 18 1 1.00 1 1
3 15 2 1.29 2 1
3 15 3 1.86 3 1
3 i3 4 2.93 é 2
3 13 b= 5.01 10 4
3 13 é 9.01 20 8
3 b 3] 7 16.90 33 16
3 13 8 I2.67 70 32
3 13 9 64.38 126 64
3 13 10 128.13 232 128
3 13 11 256.00 462 256
3 135 12 512.00 ?24 512
3 15 13 1024.00 1716 1024
3 135 14 2048.00 3432 2048
3 15 h8-1 4096.00 6433 4096

Figure 4. Fplding vs. Disk Modulo :
(i) upper bound for expected cost for folding
(ii) lower bound for expected cost for Disk Modulo
(i{idoptimal cost
as described in the paper.

M33890811

00Lk.b44e CUs

[P] 001 6442 C45

]

r
M33890811 601.6442

AR

Chan, ".Y.
Multidisk file design. 1984,

	COVER
	Foreword
	Abstract
	Introduction
	An analysis of disk modulo
	Lemma
	Proof of lemma
	An analysis of folding
	Theorem
	Proof of theorem
	Folding vs disk modulo
	References
	COVER BACK
	CONTENTS

