Skip to main content
Log in

On the average length of Delaunay triangulations

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We shall show that on the average, the total length of a Delaunay triangulation is of the same order as that of a minimum triangulation, under the assumption that our points are drawn from a homogeneous planar Poisson point distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Bentley,Multidimensional divide-and-conquer, Communications of ACM, Vol. 23, No. 4 (1980), 214–229.

    Google Scholar 

  2. R. C. Chang and R. C. T. Lee,The average case performance analysis of Bentley's divide-and-conquer algorithm to solve the planar closest-pair problem, to appear.

  3. B. Delaunay,Sur la sphere vide, Bull. Acad. Sci. USSR(VII), Classe Sci. Mat. Nat. (1943), 793–800.

  4. J. R. Goldman,Stochastic point process: limit theorems, Ann. Math. Statist. 38 (1967), 771–779.

    Google Scholar 

  5. D. G. Kirkpatrick,A note on Delaunay and optimal triangulations, Information Processing Letters, Vol. 10, No. 3 (1980), 127–128.

    Google Scholar 

  6. C. L. Lawson,Software for C 1 surface interpolation, inMathematical Software III, J. Rice, Ed., Academic Press, New York (1977).

    Google Scholar 

  7. D. T. Lee and B. J. Schachter,Two algorithms for constructing a Delaunay triangulation, International Journal of Computer and Information Sciences, Vol. 9, No. 3 (1980), 219–242.

    Google Scholar 

  8. A. Lingas,Advances in Minimum Weight Triangulation, Dissertation, Linköping University, Sweden (1983).

    Google Scholar 

  9. E. L. Lloyd,On triangulations of a set of points in the plane, Proc. 18th Annual IEEE Conference on the Foundations of Computer Science, Providence (1977).

  10. G. K. Manacher and A. L. Zorbrist,Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation, Information Processing Letters, Vol. 9, No. 1 (1979), 31–34.

    Google Scholar 

  11. E. S. Marks,A lower bound for the expected travel among m random points, Ann. Math. Statist. 19 (1948), 419–422.

    Google Scholar 

  12. R. E. Miles,On the homogeneous planar Poisson point process, Mathematical Biosciences, Vol. 6 (1972), 85–127.

    Google Scholar 

  13. M. I. Shamos,Geometry and Statistics: Problems at the interface, inAlgorithms and Complexity: New Direction and Recent Results, J. F. Traub, Ed., Academic Press, New York (1976).

    Google Scholar 

  14. M. I. Shamos,Computational Geometry, Ph.D. Dissertation, Yale University (1978).

  15. M. I. Shamos and D. Hoey,Closest point problems, Proc. 16th Annual IEEE Conference on Foundations of Computer Sciences (1975), 151–162.

  16. G. Voronoi,Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxieme Memoire:Recherches sur les parallelloedres. Deuxieme reine angew. Math. 134 (1908), 198–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, R.C., Lee, R.C.T. On the average length of Delaunay triangulations. BIT 24, 269–273 (1984). https://doi.org/10.1007/BF02136025

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02136025

Keywords

Navigation