Abstract
Each iteration of the multishift QR algorithm of Bai and Demmel requires the computation of a “shift vector” defined bym shifts of the origin of the spectrum that control the convergence of the process. A common choice of shifts consists of the eigenvalues of the trailing principal submatrix of orderm, and current practice includes the computation of these eigenvalues in the determination of the shift vector. In this paper, we describe an algorithm based on the evaluation of the characteristic polynomial of a Hessenberg matrix, which directly produces the shift vector without computing eigenvalues. This algorithm is stable, more accurate, faster, and simpler than the current alternative. It also allows for a consistent shift strategy with dynamic adjustment of the number of shifts.
Similar content being viewed by others
References
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen,LAPACK Users' Guide (SIAM, Philadelphia, PA, 1992).
Z. Bai and J.W. Demmel, On a block implementation of the Hessenberg multishift QR iteration, Int. J. High-Speed Comp. 1 (1989) 97–112.
A. Danilevskii, On the numerical solution of the secular equation, Math. Sb. 2 (1937) 169–171.
L. Derwidué, Une méthode mécanique de calcul des vecteurs propres d'une matrice quelconque, Bull. Soc. Roy. Sci. Liège (1955) 149–171.
A.A. Dubrulle, The multishift QR algorithm — is it worth the trouble? TR G320-3558, IBM Scientific Center, Palo Alto, CA (1991; revised 1992).
G.J.F. Francis, The QR transformation, Parts I and II, Comp. J. 4 (1961–1962) 265–272 and 322–345.
G.H. Golub and C.F. Van Loan,Matrix Computations (The Johns Hopkins University Press, Baltimore, MD, 1989).
M.A. Hyman, Eigenvalues and eigenvectors of general matrices,12th ACM National Meeting, Houston, TX (1957).
A. Krylov, On the numerical solution of equations by which the frequency of small oscillations is determined in material systems, Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 4 (1931) 491–539.
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Stand. 45 (1950) 255–282.
C.B., Moler and G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM. J. Num. Anal. 10 (1973) 241–256.
B.N. Parlett, Laguerre's, method applied to the matrix eigenvalue problem, Math. Comp. 18 (1964) 464–485.
B.T. Smith, J.M. Boyle, Y. Ikebe, V.C. Klemma and C.B. Moler,Matrix Eigensystem Routines-EISPACK Guide (Springer, New York, NY, 1976).
U. Le Verrier, Sur les variations séculaires des éléments elliptiques des sept planètes principales, J. Math. Pures et Appl. 5 (1840) 220–254.
D.S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigenvalue problem, Lin. Alg. Appl. 143 (1991) 19–47.
J.H. Wilkinson,The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).
J.H. Wilkinson and C. Reinsch,Handbook for Automatic Computation, Vol. 2:Linear Algebra (Springer, New York, NY, 1971).
Author information
Authors and Affiliations
Additional information
Communicated by C. Brezinski
The work of this author was in part supported by the National Science Foundation, grant number ESC-9003107, and the Army Research Office, grant number DAAL-03-91-G-0038.
Rights and permissions
About this article
Cite this article
Dubrulle, A.A., Golub, G.H. A multishift QR iteration without computation of the shifts. Numer Algor 7, 173–181 (1994). https://doi.org/10.1007/BF02140681
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02140681