Abstract
This paper contains two general results. The first is an extension of the theory of general linear extrapolation methods to a non-commutative field (or even a non-commutative unitary ring). The second one, by exploiting these new results, is to solve an old conjecture about Wynn's vector ε-algorithm. Then, by using designants and Clifford algebras, we show how the vectors ∈ (n) k can be written as a ratio of two designants.
This result allow us to find, as a particular case, some well-known results and some others which are new.
Similar content being viewed by others
References
A.C. Aitken,Determinants and Matrices (Oliver and Boyd, Edinburgh, 1965).
A. Artin,Geometric Algebra (Interscience, New York, 1966).
C. Brezinski and M. Redivo Zaglia,Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).
C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175–187.
C. Brezinski, Some results in the theory of the vector ε-algorithm, Lin. Alg. Appl. 8 (1974) 77–86.
C. Brezinski, Computation of the eigenelements of a matrix by the ε-algorithm, Lin. Alg. Appl. 11 (1975) 7–20.
C. Brezinski, Some determinantal identities in a vector space, with applications, in:Padé Approximation and its Applications, eds. H. Werner and H.J. Bünger, LNM 1071 (Springer, Berlin, 1984) pp. 1–11.
C. Brezinski, Application de l'ε-algorithme à la résolution des systèmes non linéaires, C.R. Acad. Sci. Paris 271A (1970) 1174–1177.
R. Deheuvels,Formes Quadratiques et Groupes Classiques (Presses Universitaires de France, Paris, 1981).
J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 7 (1943) 27–45
F.J. Dyson, Quaternion determinants, Helv. Phys. Acta 45 (1972) 289–302.
E. Gekeler, On the solution of systems of equations by the epsilon algorithm of Wynn, Math. Comp. 26 (1972) 427–436.
R. Godement,Cours d'Algèbre (Hermann, Paris, 1966).
P.R. Graves-Morris, Vector-valued rational interpolants I, Numer. Math. 42 (1983) 331–348.
P.R. Graves-Morris, Vector-valued rational interpolants II, IMA J. Numer. Anat. 4 (1984) 209–224.
P.R. Graves-Morris and C.D. Jenkins, Vector-valued rational interpolants III, Constr. Approx. 2 (1986) 263–289.
P.R. Graves-Morris and D.E. Roberts, From matrix to vector Padé approximants, J. Comp. Appl. Math., to appear.
T. Håvie, Generalized Neville type extrapolation schemes, BIT 19 (1979) 204–213
A. Heyting, Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation, Math. Ann. 98 (1927) 465–490.
G.N. Hile and P. Lounesto, Matrix representations of Clifford algebras, Lin. Alg. Appl. 128 (1990) 51–63.
M.L. Mehta,Matrix Theory. Selected Topics and Useful Results (Les Editions de Physique, Les Ulis, 1989).
J.B. McLeod, A note on the ε-algorithm, Computing 7 (1971) 17–24.
O. Ore, Linear equations in non-commutative fields, Ann. Math. 32 (1931) 463–477.
R. Penrose, A generalised inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955) 406–413.
I.R. Porteous,Topological Geometry, 2nd ed. (Cambridge University Press, Cambridge, 1981).
A. Salam, Extrapolation: extension et nouveaux résultats, Thesis, Université des Sciences et Technologies de Lille (1993).
D. Shanks, Nonlinear transformations of divergent and slowly convergent sequences, J.Math. Phys. 34 (1955) 1–42.
P. Wynn, On a device for computing thee m(Sn) transformation, MTAC 10 (1956) 91–96.
P. Wynn, Vector continued fractions, Lin. Alg. Appl. 1 (1968) 357–395.
P. Wynn, Continued fractions whose coefficients obey a non-commutative law of multiplication, Arch. Rational Mech. Anal. 12 (1963) 273–312.
Author information
Authors and Affiliations
Additional information
Communicated by C. Brezinski
Rights and permissions
About this article
Cite this article
Salam, A. Non-commutative extrapolation algorithms. Numer Algor 7, 225–251 (1994). https://doi.org/10.1007/BF02140685
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02140685