Skip to main content

Advertisement

Log in

Non-commutative extrapolation algorithms

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper contains two general results. The first is an extension of the theory of general linear extrapolation methods to a non-commutative field (or even a non-commutative unitary ring). The second one, by exploiting these new results, is to solve an old conjecture about Wynn's vector ε-algorithm. Then, by using designants and Clifford algebras, we show how the vectors ∈ (n) k can be written as a ratio of two designants.

This result allow us to find, as a particular case, some well-known results and some others which are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Aitken,Determinants and Matrices (Oliver and Boyd, Edinburgh, 1965).

    Google Scholar 

  2. A. Artin,Geometric Algebra (Interscience, New York, 1966).

    Google Scholar 

  3. C. Brezinski and M. Redivo Zaglia,Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).

    Google Scholar 

  4. C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175–187.

    Google Scholar 

  5. C. Brezinski, Some results in the theory of the vector ε-algorithm, Lin. Alg. Appl. 8 (1974) 77–86.

    Google Scholar 

  6. C. Brezinski, Computation of the eigenelements of a matrix by the ε-algorithm, Lin. Alg. Appl. 11 (1975) 7–20.

    Google Scholar 

  7. C. Brezinski, Some determinantal identities in a vector space, with applications, in:Padé Approximation and its Applications, eds. H. Werner and H.J. Bünger, LNM 1071 (Springer, Berlin, 1984) pp. 1–11.

    Google Scholar 

  8. C. Brezinski, Application de l'ε-algorithme à la résolution des systèmes non linéaires, C.R. Acad. Sci. Paris 271A (1970) 1174–1177.

    Google Scholar 

  9. R. Deheuvels,Formes Quadratiques et Groupes Classiques (Presses Universitaires de France, Paris, 1981).

    Google Scholar 

  10. J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 7 (1943) 27–45

    Google Scholar 

  11. F.J. Dyson, Quaternion determinants, Helv. Phys. Acta 45 (1972) 289–302.

    Google Scholar 

  12. E. Gekeler, On the solution of systems of equations by the epsilon algorithm of Wynn, Math. Comp. 26 (1972) 427–436.

    Google Scholar 

  13. R. Godement,Cours d'Algèbre (Hermann, Paris, 1966).

    Google Scholar 

  14. P.R. Graves-Morris, Vector-valued rational interpolants I, Numer. Math. 42 (1983) 331–348.

    Google Scholar 

  15. P.R. Graves-Morris, Vector-valued rational interpolants II, IMA J. Numer. Anat. 4 (1984) 209–224.

    Google Scholar 

  16. P.R. Graves-Morris and C.D. Jenkins, Vector-valued rational interpolants III, Constr. Approx. 2 (1986) 263–289.

    Google Scholar 

  17. P.R. Graves-Morris and D.E. Roberts, From matrix to vector Padé approximants, J. Comp. Appl. Math., to appear.

  18. T. Håvie, Generalized Neville type extrapolation schemes, BIT 19 (1979) 204–213

    Google Scholar 

  19. A. Heyting, Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation, Math. Ann. 98 (1927) 465–490.

    Google Scholar 

  20. G.N. Hile and P. Lounesto, Matrix representations of Clifford algebras, Lin. Alg. Appl. 128 (1990) 51–63.

    Google Scholar 

  21. M.L. Mehta,Matrix Theory. Selected Topics and Useful Results (Les Editions de Physique, Les Ulis, 1989).

    Google Scholar 

  22. J.B. McLeod, A note on the ε-algorithm, Computing 7 (1971) 17–24.

    Google Scholar 

  23. O. Ore, Linear equations in non-commutative fields, Ann. Math. 32 (1931) 463–477.

    Google Scholar 

  24. R. Penrose, A generalised inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955) 406–413.

    Google Scholar 

  25. I.R. Porteous,Topological Geometry, 2nd ed. (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  26. A. Salam, Extrapolation: extension et nouveaux résultats, Thesis, Université des Sciences et Technologies de Lille (1993).

  27. D. Shanks, Nonlinear transformations of divergent and slowly convergent sequences, J.Math. Phys. 34 (1955) 1–42.

    Google Scholar 

  28. P. Wynn, On a device for computing thee m(Sn) transformation, MTAC 10 (1956) 91–96.

    Google Scholar 

  29. P. Wynn, Vector continued fractions, Lin. Alg. Appl. 1 (1968) 357–395.

    Google Scholar 

  30. P. Wynn, Continued fractions whose coefficients obey a non-commutative law of multiplication, Arch. Rational Mech. Anal. 12 (1963) 273–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salam, A. Non-commutative extrapolation algorithms. Numer Algor 7, 225–251 (1994). https://doi.org/10.1007/BF02140685

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02140685

Keywords

Subject classification