Skip to main content
Log in

Repeated Red-Black ordering: a new approach

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Hereafter, we describe and analyze, from both a theoretical and a numerical point of view, an iterative method for efficiently solving symmetric elliptic problems with possibly discontinuous coefficients. In the following, we use the Preconditioned Conjugate Gradient method to solve the symmetric positive definite linear systems which arise from the finite element discretization of the problems. We focus our interest on sparse and efficient preconditioners. In order to define the preconditioners, we perform two steps: first we reorder the unknowns and then we carry out a (modified) incomplete factorization of the original matrix. We study numerically and theoretically two preconditioners, the second preconditioner corresponding to the one investigated by Brand and Heinemann [2]. We prove convergence results about the Poisson equation with either Dirichlet or periodic boundary conditions. For a meshsizeh, Brand proved that the condition number of the preconditioned system is bounded byO(h −1/2) for Dirichlet boundary conditions. By slightly modifying the preconditioning process, we prove that the condition number is bounded byO(h −1/3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. Brand, An incomplete-factorization preconditioning using repeated red-black ordering, Numer. Math. 61 (1992) 433–454.

    Google Scholar 

  2. C. Brand and Z.E. Heinemann, A new iterative solution technique for reservoir simulation equations on locally refined grids, SPE 18410 (1989).

  3. T.F. Chan and H.C. Elman, Fourier analysis of iterative methods for elliptic problems, SIAM Rev. 31 (1989) 20–49.

    Google Scholar 

  4. P. Ciarlet, Jr, Etude de préconditionnements parallèles pour la résolution d'équations aux dérivées partielles elliptiques. Une décomposition de l'espaceL 2 (Ω)3, Thèse, Université Pierre et Marie Curie (1992).

  5. P. Ciarlet,Introduction à l'Analyse Numérique Matricielle et à l'Optimisation (Masson, 1982).

  6. P. Ciarlet, B. Miara and J.-M. Thomas,Exercises d'Analyse Numérique Matricielle et d'Optimisation avec Solutions (Masson, 1986).

  7. I.S. Duff and G. Meurant, The effect of ordering on preconditioned conjugate gradients, BIT 29 (1989) 635–657.

    Google Scholar 

  8. T. Dupont, R.P. Kendall and H.H. Rachford, An approximate factorization procedure for solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal. 5 (1968) 559–573

    Google Scholar 

  9. T. Dupont, H.L. Stone and H.H. Rachford, Factorization techniques for elliptic difference equations, SIAM Proc. 2 (1970) 168–174.

    Google Scholar 

  10. A. George and J.W.H. Liu,Computer Solution of Large Sparse Positive Definite Systems (Prentice-Hall, Englewood Cliffs, NJ, 1981).

    Google Scholar 

  11. G.H. Golub and G. Meurant,Résolution Numérique des Grands Systèmes Linéaires (Eyrolles, Paris, 1983).

    Google Scholar 

  12. I. Gustafsson, A class of first order factorization methods, BIT 18 (1978) 142–156.

    Google Scholar 

  13. I. Gustafsson, On first and second order symmetric factorization methods for the solution of elliptic difference equations, Computer Sciences, 78.01R, Chalmers University of Technology, Sweden (1978).

    Google Scholar 

  14. I. Gustafsson, On modified incomplete Cholesky factorization methods for the solution of problems with mixed boundary conditions and problems with discontinuous material coefficients, J. Numer. Meth. Eng. 14 (1979) 1127–1140.

    Google Scholar 

  15. P. Lascaux and R. Théodor,Analyse Numérique Matricielle Appliquée à l'Art de l'Ingénieur (Masson, 1986).

  16. J.A. Meijerink and H.A. Van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetricM-matrix, Math. Comp. 31 (1977) 148–162.

    Google Scholar 

  17. J.A. Meijerink and H.A. Van der Vorst, Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems, J. Comp. Phys. 44 (1981) 135–155.

    Google Scholar 

  18. R.S. Varga,Matrix Iterative Analysis (Prentice-Hall, 1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by c. Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P. Repeated Red-Black ordering: a new approach. Numer Algor 7, 295–324 (1994). https://doi.org/10.1007/BF02140688

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02140688

Keywords

Navigation