Skip to main content
Log in

Dyadic Hermite interpolants on a triangulation

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Givenf and Δf on the vertices of a triangulation, we build an interpolating functionf by means of a subdivision algorithm. Infinite products of matrices are used to prove the convergence to aC 1 function for some classes of triangulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Birkhoff and L. Mansfield, Compatible triangular finite elements. J. Math. Anal. Appl. 47 (1974) 531–553.

    Google Scholar 

  2. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 453 (1993).

  3. A.S. Cavaretta and C.A. Micchelli, The design of curves and surfaces by subdivision algorithms, in:Mathematical Methods in CAGD, eds. Lyche and Schumaker (Academic Press, 1989) pp. 115–153.

  4. P.G. Ciarlet,Introduction à l'Analyse Numérique Matricielle et à l'Optimisation (Masson, 1982).

  5. Chr. Coatmélec, Prolongement d'une fonction en une fonction différentiable, in:Approximations with Special Emphasis on Splines (Academic Press, 1969) pp. 29–49.

  6. J. Dieudonné,Eléments d'Analyse, vol. 1 (Gauthier Villars) p. 57.

  7. S. Dubuc and F. Nekka, General interpolation schemes for the generation of irregular surfaces, Constr. Approx. 9, (1993) 525–542.

    Google Scholar 

  8. N. Dyn, J.A. Gregory and D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx. (1991) 127–147.

  9. N. Dyn, D. Levin and J.A. Gregory, A 4-point interpolatory subdivision scheme for curve design, Comp. Aided Geom. Design 4 (1987) 257–268.

    Google Scholar 

  10. A. Le Méhauté, Taylorian fields and subdivision algorithms, Numer. Algor. 1 (1991).

  11. L. Mansfield, Higher order compatible trinagular finite elements, Numer. Math. 22 (1974) 89–97.

    Google Scholar 

  12. J.L. Merrien, A family of Hermite interpolants by bisection algorithms, Numer. Algor. 2 (1992) 187–200.

    Google Scholar 

  13. C.A. Micchelli and H. Prautzsch, Computing surfaces invariant under subdivision, Comp. Aided Geom. Design 4 (1987) 321–328.

    Google Scholar 

  14. M.J.D. Powel and M.A. Sabin, Piecewise quadratic approximation on triangles, ACM Trans. Math. Software (1977) 316–325.

  15. G. de Rham, Sur une courbe plane, J. Math. Pures et Appl. 35 (1956) 25–42.

    Google Scholar 

  16. H. Whitney, Analytic extensions of differentiable functions defined on closed set, Trans. Amer. Math. Soc. (1934) 63–89.

  17. H. Whitney, Differentiable functions defined on closed sets, Trans. Amer. Math. Soc. (1934).

  18. A. Ženišek, A general theorem on triangular finiteC (m)-elements, RAIRO Anal. Num. 2 (1974) 119–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.J. Laurent

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrien, JL. Dyadic Hermite interpolants on a triangulation. Numer Algor 7, 391–410 (1994). https://doi.org/10.1007/BF02140692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02140692

Keywords

AMS subject classification

Navigation