Abstract
It is well-known that Bi-CG can be adapted so that hybrid methods with computational complexity almost similar to Bi-CG can be constructed, in which it is attempted to further improve the convergence behavior. In this paper we will study the class of BiCGstab methods.
In many applications, the speed of convergence of these methods appears to be determined mainly by the incorporated Bi-CG process, and the problem is that the Bi-CG iteration coefficients have to be determined from the BiCGstab process. We will focus our attention to the accuracy of these Bi-CG coefficients, and how rounding errors may affect the speed of convergence of the BiCGstab methods. We will propose a strategy for a more stable determination of the Bi-CG iteration coefficients and by experiments we will show that this indeed may lead to faster convergence.
Similar content being viewed by others
References
Z. Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem, Math. Comp. 62 (1994) 209–226.
R.E. Bank and T.F. Chan, An analysis of the composite step biconjugate gradient method, Numer. Math. 66 (1993) 295–319.
P.N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Stat. Comp. 12 (1991) 58–78.
S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (1983) 345–357.
T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto and C.H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comp. 15 (1994) 338–347.
G.H. Golub and C.F. Van Loan,Matrix Computations, 2nd ed. (The Johns Hopkins University Press, Baltimore and London, 1989).
R. Fletcher, Conjugate gradient methods for indefinite systems, in:Proc. Dundee Biennial Conf. on Numerical Analysis, ed. G. Watson (Springer, New York, 1975).
R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comp. 14 (1993) 470–482.
R.W. Freund, M.H. Gutknecht and N. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comp. 14 (1993) 137–158.
A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate gradient recurrences, Lin. Alg. Appl. 113 (1989) 7–63.
M.H. Gutknecht, Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci. Comp. 14 (1993) 1020–1033.
C. Lanczos, Solution of systems of linear equations by minimized iteration, J. Res. Nat. Bur. Stand. 49 (1952) 33–53.
U. Meier Yang, Preconditioned conjugate gradient-like methods for nonsymmetric linear systems, Preprint, Center for Research and Development, University of Illinois at Urbana-Champaign (1992).
J. Modersitzki and G.L.G. Sleijpen, An error analysis of CSBCG, in preparation.
A. Neumaier, Oral presentation at the Oberwolfach meeting “Numerical Linear Algebra”, Oberwolfach (April 1994).
C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem, Lin. Alg. Appl. 34 (1980) 235–258.
B.N. Parlett, D.R. Taylor and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp. 44 (1985) 105–124.
Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981) 105–126.
Y. Saad and M.H. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (1986) 856–869.
Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comp. 14 (1993) 461–469.
G.L.G. Sleijpen and D.R. Fokkema, BiCGstab(ℓ) for linear equations involving matrices with complex spectrum, ETNA 1 (1993) 11–32.
G.L.G. Sleijpen and H.A. van der Vorst, Reliable updated residuals in hybrid Bi-CG methods, Preprint 886, Dept. Math., University Utrecht (1994), to appear in Computing.
G.L.G. Sleijpen, H.A. van der Vorst and D.R. Fokkema, BiCGstab(ℓ) and other hybrid Bi-CG methods, Numer. Algor. 7 (1994) 75–109.
P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 10 (1989) 36–52.
H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 13 (1992) 631–644.
H.A. van der Vorst and C. Vuik, The superlinear convergence behaviour of GMRES, J. Comp. Appl. Math. 48 (1993) 327–341.
D.M. Young and K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Lin. Alg. Appl. 34 (1980) 159–194.
Author information
Authors and Affiliations
Additional information
Communicated by C. Brezinski
Rights and permissions
About this article
Cite this article
Sleijpen, G.L.G., van der Vorst, H.A. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic. Numer Algor 10, 203–223 (1995). https://doi.org/10.1007/BF02140769
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02140769