Skip to main content
Log in

A program for solving the L2 reduced-order model problem with fixed denominator degree

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A set of necessary conditions that must be satisfied by the L2 optimal rational transfer matrix approximating a given higher-order transfer matrix, is briefly described. On its basis, an efficient iterative numerical algorithm has been obtained and implemented using standard MATLAB functions. The purpose of this contribution is to make the related computer program available and to illustrate some significant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.R. Aigrain and A.M. Williams, Synthesis of n-reactance networks for desired transient response, J. Appl. Phys. 20 (1949) 597–600.

    Article  Google Scholar 

  2. K.J. Åström,Introduction to Stochastic Control Theory (Academic Press, New York, 1970).

    Google Scholar 

  3. L. Baratchart, Recent and new results in rational L2 approximation, in:Modelling, Robustness and Sensitivity Reduction in Control Systems, ed. R.F. Curtain (Springer, Berlin, 1987) pp. 119–126.

    Google Scholar 

  4. L. Baratchart, M. Cardelli and M. Olivi, Identification and rational L2 approximation: a gradient algorithm, Automatica 27 (1991) 413–418.

    Article  Google Scholar 

  5. A.E. Bryson and A. Carrier, Second-order algorithm for optimal model order reduction, J. Guidance Control Dynam. 13 (1990) 887–892.

    MathSciNet  Google Scholar 

  6. F.R. Gantmacher,The Theory of Matrices, Vol. 1 (Chelsea, New York, 1977).

    Google Scholar 

  7. W. Gawronski and J.N. Juang, Model reduction for flexible structures, Control Dyn. Syst. 36 (1990) 143–222.

    Google Scholar 

  8. D.C. Hyland and D.S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore, IEEE Trans. Auto. Contr. AC-30 (1985) 1201–1211.

    Article  Google Scholar 

  9. W. Krajewski, A. Lepschy, G.A. Mian and U. Viaro, On model reduction by L2-optimal pole retention, J. Franklin Inst. 327 (1990) 61–70.

    Article  MathSciNet  Google Scholar 

  10. W. Krajewski, A. Lepschy and U. Viaro, Optimality conditions in multivariable L2 model reduction, J. Franklin Inst. 330 (1993) 431–439.

    Article  MathSciNet  Google Scholar 

  11. C. P. Kwong, Optimal chained aggregation for reduced order modelling, Int. J. Control 35 (1982) 965–982.

    Google Scholar 

  12. L. Meier and D.G. Luenberger, Approximation of linear constant systems, IEEE Trans. Auto. Contr. AC-12 (1967) 585–587.

    Article  Google Scholar 

  13. R.N. Mishra and D.A. Wilson, A new algorithm for optimal reduction of multivariable systems, Int. J. Control 31 (1980) 443–466.

    Google Scholar 

  14. B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Contr. AC-26 (1981) 17–32.

    Article  Google Scholar 

  15. S. Mukherjee and R. N. Mishra, Reduced order modelling of linear multivariable systems using an error minimization technique. J. Franklin Inst. 325 (1988) 235–245.

    Article  Google Scholar 

  16. M. Olivi and S. Steer, Approximation rationelle en norme L2 des systèmes dynamiques, APII 24 (1990) 481–510.

    Google Scholar 

  17. E. Rosencher, Approximation rationelle des filtres à un ou deux indices: une approche Hilbertienne, Thèse de docteur-ingénieur, Univ. Paris IX-Dauphine (1978).

  18. G. Ruckebush, Sur l'approximation rationelle des filtres, Rapport n. 35, CMA Ecole Polytechnique, Paris (1978).

    Google Scholar 

  19. Y. Shamash, Linear system reduction using Padé approximation to allow retention of dominant modes, Int. J. Control 21 (1975) 257–272.

    Google Scholar 

  20. J.T. Spanos, M.H. Milman and D.L. Mingori, A new algorithm for L2 optimal model reduction, Automatica 28 (1992) 897–909.

    Article  MathSciNet  Google Scholar 

  21. J.L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain (AMS, Providence, RI, 1935).

    Google Scholar 

  22. D.A. Wilson, Optimum solution of model-reduction problem, Proc. IEE 117 (1970) 1161–1165.

    Google Scholar 

  23. D.A. Wilson, Model reduction for multivariable systems, Int. J. Control 20 (1974) 57–64.

    Google Scholar 

  24. D. Žigić, L. T. Watson, E.G. Collins, Jr., and D. S. Bernstein, Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem, Int. J. Control 56 (1992) 173–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Work partially supported byConsorzio Padova Ricerche through the IRI programme “Consortia Città Ricerche—Central European Initiative”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajewski, W., Lepschy, A., Redivo-Zaglia, M. et al. A program for solving the L2 reduced-order model problem with fixed denominator degree. Numer Algor 9, 355–377 (1995). https://doi.org/10.1007/BF02141596

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141596

Keywords

AMS subject classification

Navigation