Skip to main content
Log in

Solution of integral equations using function-valued Padé approximants II

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the use of functional (i.e. function-valued) Padé approximants to accelerate the convergence of Neumann series of linear integral equations and to estimate their characteristic values and eigenfunctions.

We apply our methods to the Neumann series solution for the linear integral equation

$$\phi (x) = 1 + \lambda \int_{ - 1}^1 {K(x,y)\phi (y) dy,} $$

where

$$K(x,y) = \left\{ {\begin{array}{*{20}c} {{\textstyle{1 \over 8}}(1 + y)(1 - x), - 1 \le y \le x \le 1,} \\ {{\textstyle{1 \over 8}}(1 + x)(1 - y), - 1 \le x \le y \le 1,} \\\end{array}} \right.$$

whose kernel is non-degenerate, but whose characteristic values λ s =(sπ)2 and corresponding eigenfunctions φ s (x)=sin1/2sπ(x+1) are well known. Estimates of λ s and φ s (x) derived using (hybrid) functional Padé approximants are found to be substantially more accurate than those from the Rayleigh-Ritz method, the Fredholm determinant method and the ordinary Padé approximant method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Alabiso, P. Butera and G.M. Prosperi, Resolvent operator, Padé approximation and bound states in potential scattering, Lett. Nuovo Cim. 3 (1970) 831–839.

    Google Scholar 

  2. C. Alabiso, P. Butera and G.M. Prosperi, Variational principles and Padé approximants. Bound states in potential theory, Nucl. Phys. B31 (1971) 141–162.

    Article  Google Scholar 

  3. I.D. Coope, private communication (1991).

  4. P.R. Graves-Morris, Solution of integral equations using generalised inverse, function-valued Padé approximants I, J. Comp. Appl. Math. 32 (1990) 117–124.

    Article  Google Scholar 

  5. P.R. Graves-Morris and C.D. Jenkins, Degeneracies of generalised inverse vector-valued Padé approximants, Constr. Approx. 5 (1989) 463–485.

    Article  Google Scholar 

  6. P.R. Graves-Morris and E.B. Saff, Row convergence theorems for generalised inverse vector-valued Padé approximants, J. Comp. Appl. Math. 23 (1988) 63–85.

    Article  Google Scholar 

  7. B.L. Moiseiwitsch,Integral Equations (Longman, New York, 1977).

    Google Scholar 

  8. de Montessus de Ballore, Sur les fractions continues algébriques, Bull. Soc. Math. de France 30 (1902) 28–36.

    Google Scholar 

  9. E.B. Saff, An extension of de Montessus de Ballore's theorem on the convergence of interpolating rational functions, J. Approx. Theory 6 (1972) 63–67.

    Article  Google Scholar 

  10. F. Smithies,Integral Equations (Cambridge University Press, 1962).

  11. G.A. Baker, J.L. Gammel and J.G. Wills, An investigation of the Padé approximant method, J. Math. Anal. Appl. 2 (1961) 405–418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graves-Morris, P.R., Thukral, R. Solution of integral equations using function-valued Padé approximants II. Numer Algor 3, 223–234 (1992). https://doi.org/10.1007/BF02141931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141931

Keywords

Navigation