Skip to main content
Log in

A hybrid iterative method for symmetric positive definite linear systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A hybrid iterative scheme that combines the Conjugate Gradient (CG) method with Richardson iteration is presented. This scheme is designed for the solution of linear systems of equations with a large sparse symmetric positive definite matrix. The purpose of the CG iterations is to improve an available approximate solution, as well as to determine an interval that contains all, or at least most, of the eigenvalues of the matrix. This interval is used to compute iteration parameters for Richardson iteration. The attraction of the hybrid scheme is that most of the iterations are carried out by the Richardson method, the simplicity of which makes efficient implementation on modern computers possible. Moreover, the hybrid scheme yields, at no additional computational cost, accurate estimates of the extreme eigenvalues of the matrix. Knowledge of these eigenvalues is essential in some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Brezinski and M. Redivo-Zaglia, Hybrid procedures for solving linear systems, Numer. Math. 67 (1994) 1–19.

    Article  Google Scholar 

  2. D. Calvetti, G. H. Golub and L. Reichel, Gaussian quadrature applied to adaptive Chebyshev methods, in:Recent Advances in Iterative Methods, eds. G. Golub, A. Greenbaum and M. Luskin (Springer, New York, 1994), pp. 31–44.

    Google Scholar 

  3. D. Calvetti and L. Reichel, Adaptive Richardson iteration based on Leja points, J. Comp. Appl. Math., to appear.

  4. P. Concus, G. H. Golub and D. P. O'Leary, A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, in:Sparse Matrix Computations, eds. J. R. Bunch and D. J. Rose (Academic Press, New York, 1976) pp. 309–332.

    Google Scholar 

  5. T. A. Davis, Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals in confinement, Ph.D. Thesis, Department of Mathematics and Computer Science, Kent State University, Kent, OH (1994).

    Google Scholar 

  6. J. E. Dennis and R. B. Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, 1983).

    Google Scholar 

  7. J. J. Dongarra, I. S. Duff, D. C. Sorensen and H. A. van der Vorst,Solving Linear Systems on Vector and Shared Memory Computers. (SIAM, Philadelphia, 1991).

    Google Scholar 

  8. A. Edrei, Sur les déterminants récurrents et les singularités d'une fonction donnée par son developpement de Taylor, Composito Math. 7 (1939) 20–88.

    Google Scholar 

  9. H. C. Elman, Y. Saad and P. E. Saylor, A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comp. 7 (1986) 840–855.

    Article  Google Scholar 

  10. G. H. Golub and M. D. Kent, Estimates of eigenvalues for iterative methods, Math. Comp. 53 (1989) 619–626.

    Google Scholar 

  11. G. H. Golub and C. F. Van Loan,Matrix Computations, 2nd ed. (Johns Hopkins University Press, Baltimore, 1989).

    Google Scholar 

  12. G. H. Golub and R. S. Varga, Chebyshev semi-iterative methods, successive over-relaxation methods, and second order Richardson iterative methods, Numer. Math. 3 (1961) 147–168.

    Article  Google Scholar 

  13. G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969) 221–230.

    Google Scholar 

  14. L. A. Hageman and D. M. Young,Applied Iterative Methods, (Academic Press, New York, 1981).

    Google Scholar 

  15. F. Leja, Sur certaines suits liées aux ensembles plans et leur application à la representation conforme, Ann. Polon. Math. 4 (1957) 8–13.

    Google Scholar 

  16. N. M. Nachtigal, L. Reichel and L. N. Trefethen, A hybrid GMRES algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal. Appl. 13 (1992) 796–825.

    Google Scholar 

  17. D. P. O'Leary, Hybrid conjugate gradient algorithms, Ph.D. thesis, Computer Science Department, Stanford University, Stanford, CA (1975).

    Google Scholar 

  18. C. C. Paige, B. N. Parlett and H. A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Lin. Alg. Appl., to appear.

  19. L. Reichel, The application of Leja points to Richardson iteration and polynomial preconditioning, Lin. Alg. Appl. 154–156 (1991) 389–414.

    Article  Google Scholar 

  20. H. Rutishauser, Theory of gradient methods, in:Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, eds. M. Engeli, Th. Ginsburg, H. Rutishauser and E. Stiefel (Birkhäuser, Basel, 1959) pp. 24–49.

    Google Scholar 

  21. P. E. Saylor, Leapfrog variants of iterative methods for linear algebraic equations, J. Comp. Appl. Math. 24 (1988) 169–193.

    Article  Google Scholar 

  22. R. S. Varga,Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by NSF grant DMS-9409422.

Research supported in part by NSF grant DMS-9205531.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvetti, D., Reichel, L. A hybrid iterative method for symmetric positive definite linear systems. Numer Algor 11, 79–98 (1996). https://doi.org/10.1007/BF02142490

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02142490

Keywords

Navigation