Skip to main content
Log in

Fastiterative methods for least squares estimations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Least squares estimations have been used extensively in many applications, e.g. system identification and signal prediction. When the stochastic process is stationary, the least squares estimators can be found by solving a Toeplitz or near-Toeplitz matrix system depending on the knowledge of the data statistics. In this paper, we employ the preconditioned conjugate gradient method with circulant preconditioners to solve such systems. Our proposed circulant preconditioners are derived from the spectral property of the given stationary process. In the case where the spectral density functions(θ) of the process is known, we prove that ifs(θ) is a positive continuous function, then the spectrum of the preconditioned system will be clustered around 1 and the method converges superlinearly. However, if the statistics of the process is unknown, then we prove that with probability 1, the spectrum of the preconditioned system is still clustered around 1 provided that large data samples are taken. For finite impulse response (FIR) system identification problems, our numerical results show that annth order least squares estimator can usually be obtained inO(n logn) operations whenO(n) data samples are used. Finally, we remark that our algorithm can be modified to suit the applications of recursive least squares computations with the proper use of sliding window method arising in signal processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexander,Adaptive Signal Processing, Theory and Applications (Springer, New York, 1986).

    Google Scholar 

  2. J. Biedmond, R. Lagendijk and R. Mesereau, Iterative methods for image deblurring. Proc. IEEE 78 (1990) 856–883.

    Article  Google Scholar 

  3. R. Brent, F. Gustavson and D. Yun, Fast solution of Toeplitz systems of equations and computations of Padé approximations. J.Algorithms 1 (1980) 259–295.

    Article  Google Scholar 

  4. P.J. Brockwell and R.A. Davis,Time Series: Theory and Methods (Springer, New York, 1987).

    Google Scholar 

  5. R. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Statist. Comp. 10 (1989) 104–119.

    Article  Google Scholar 

  6. R. Chan and M. Yeung, Circulat preconditioners for Toeplitz matrices with positive continuous generating functions, Math. Comp. 58 (1992) 233–240.

    Google Scholar 

  7. R. Chan and M. Yeung, Circulant preconditioners constructed from kernels. SIAM J. Numer. Anal. 29 (1992) 1093–1103.

    Article  Google Scholar 

  8. R. Chan, J. Nagy and R. Plemmons, Circulant preconditioned Toeplitz least squares iterations, SIAM J. Matrix Anal. Appl. (1992), to appear.

  9. T. Chan, An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Statist. Comp. 9 (1988) 766–771.

    Article  Google Scholar 

  10. G. Cybenko, Fast Toeplitz orthogonalization using inner products, SIAM J. Sci. Statist. Comp. 8 (1987) 734–740.

    Article  Google Scholar 

  11. P. Davis,Circulant Matrices (Wiley, New York, 1979).

    Google Scholar 

  12. W. Fuller,Introduction to Statistical Time Series (Wiley, New York, 1976).

    Google Scholar 

  13. A. Giordano and F. Hsu,Least Square Estimation with Applications to Digital Signal Processing (Wiley, New York, 1985).

    Google Scholar 

  14. U. Grenander and M. Rosenblatt,Statistical Analysis of Stationary Time Series, (Wiley, New York, 1957).

    Google Scholar 

  15. U. Grenander and G. Szegö,Toeplitz Forms and their Applications, 2nd ed. (Chelsea Publ., New York, 1984).

    Google Scholar 

  16. T. Huckle, Circulant and skew-circulant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl. 13 (1992), 767–777.

    Article  Google Scholar 

  17. F. Itakura and S. Saito, Digital filtering techniques for speech analysis and synthesis,Proc. 7th Int. Congress on Acoustics, Budapest (1971) pp. 261–264.

  18. M. Kac, W. Murdock and G. Szegö, On the eigenvalues of certain Hermitian forms. Arch. Rational Mech. Anal. 2 (1953) 767–800.

    Google Scholar 

  19. T. Ku and C. Kuo. Design and analysis of Toeplitz preconditioners. IEEE Trans. Acoust. Speech Signal Process. 40 (1991) 129–141.

    Google Scholar 

  20. N. Levinson, The Wiener rms (root-mean-square) error criterion in filter design and prediction, J. Math. Phys. 25 (1947) 261–278.

    Google Scholar 

  21. D. Lee, M. Morf and B. Friedlander, Recursive least squares ladder estimation algorithms, IEEE Trans. Acoust. Speech Signal Process. 29 (1981) 627–641.

    Article  Google Scholar 

  22. S. Marple, Efficient least squares FIR system identification, IEEE Trans. Acoust., Speech Signal Process. 29 (1981) 62–73.

    Google Scholar 

  23. J. Nagy and R. Plemmons, Some fast Toeplitz least squares algorithms, in:Proc. SPIE Conf. on Advanced Signal Processing Algorithms, Architectures, and Implementations II, vol. 1566, San Diego, CA (July 1991).

  24. M. Ng and R. Plemmons, Fast recursive least squares adaptive filtering by using FFT-based conjugate gradient iterations, submitted.

  25. H.J. Nussbaumer,Fast Fourier Transform and Convolution Algorithms (Springer, New York 1981).

    Google Scholar 

  26. J. Pearl, On coding and filtering stationary signals by discrete Fourier transform, IEEE Trans. Inform. Theory IF-19 (1973) 229–232.

    Article  Google Scholar 

  27. R. Plemmons, A proposal for FFT-based fast recursive least squares,Proc. IMA Workshop on Linear Algebra for Signal Processing (April 6–10, 1992).

  28. M. Priestley,Spectral Analysis and Time Series (Academic Press, New York, 1981).

    Google Scholar 

  29. S. Qiao, Recursive least squares algorithm for linear prediction problems, SIAM J. Matrix Anal. Appl. 9 (1988) 323–328.

    Article  Google Scholar 

  30. L. Rabiner, R. Chrochiere and J. Allen, FIR system modeling and identification in the presence of noise and with band-limited inputs. IEEE Trans. Acoust., Speech Signal Process. 26 (1978) 319–333.

    Google Scholar 

  31. P. Sherman, Circulant approximations of the inverses of Toeplitz matrices and related quantities with applications to stationary random processes, IEEE Trans. Acoust., Speech Signal Process. 33 (1985) 1630–1632.

    Google Scholar 

  32. U. Steimel, Fast computation of Toeplitz forms under narrow band conditions with applications to spectral estimation, in:Digital Signal Processing, eds. V. Cappellini and A.G. Constantinides (Academic Press, New York, 1980).

    Google Scholar 

  33. G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math. 74 (1986) 171–176.

    Google Scholar 

  34. M. Tismenetsky, A decomposition of Toeplitz matrices and optimal circulant preconditioning, Lin. Alg. Appl. 154 (1991) 105–121.

    Article  Google Scholar 

  35. E. Trytyshnikov, Optimal and super-optimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13 (1992) 459–473.

    Article  Google Scholar 

  36. J. Walker,Fourier Analysis, (Oxford University Press, New York, 1988).

    Google Scholar 

  37. J. Wilkinson,The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).

    Google Scholar 

  38. U. Yule, On a method for investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers, Philos. Trans. Roy. Soc. London., Ser. A 226 (1927) 267–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Research supported in part by HKRGC grant no. 221600070, ONR contract no. N00014-90-J-1695 and DOE grant no. DE-FG03-87ER25037.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, M.K., Chan, R.H. Fastiterative methods for least squares estimations. Numer Algor 6, 353–378 (1994). https://doi.org/10.1007/BF02142678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02142678

Keywords

AMS(MOS) subject classification