Skip to main content
Log in

On the evaluation of Hilbert transforms by means of a particular class of Turán quadrature rules

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A method for evaluating Hilbert transforms, by means of Turán quadrature rules with generalized Gegenbauer weights, is presented. The main feature of these integration formulas is the independence of the nodes of their multiplicity and thus of the precision degree. The error is analyzed both from a real and a complex perspective; in this context a new representation of the remainder term of the quadrature rules with multiple nodes for the evaluation of Hilbert transforms, valid not only for the particular class of weight functions here considered, is presented. A few numerical examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Cicenia, Numerical integration formulae involving derivatives, J. Inst. Math. Appl. 18 (1976) 79–85.

    Google Scholar 

  2. C. Dagnino, V. Demichelis and E. Santi, Numerical integration based on quasi-interpolating splines, Computing 50 (1993) 149–163.

    Google Scholar 

  3. D. Elliott, On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals, Numer. Math. 23 (1975) 311–319.

    Google Scholar 

  4. D. Elliott and D.F. Paget, Gauss type quadrature rules for Cauchy principal value integrals, Math. Comp. 33 (1979) 301–309.

    Google Scholar 

  5. W. Gautschi, A survey of Gauss-Christoffel quadrature formulae,E.B. Christoffel, eds. P.L. Butzer and F. Fehér (Birkhäuser, Basel, 1981) pp. 72–147.

    Google Scholar 

  6. W. Gautschi and R.S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20 (1983) 1170–1186.

    Google Scholar 

  7. W. Gautschi, M. A. Kovavević and G.V. Milovanović, The numerical evaluation of singular integrals with coth-kernel, BIT 27 (1987) 389–402.

    Google Scholar 

  8. A. Ghizzetti and A. Ossicini,Quadrature Formulae (Birkhäuser, Basel/Stuttgart, 1970).

    Google Scholar 

  9. L. Gori and M.L. Lo Cascio, A note on a class of Turán type quadrature formulas with Gegenbauer weight functions, Studia Univ. Babes-Bolyai, Mathematica 37 (1992) 47–63.

    Google Scholar 

  10. L. Gori and E. Santi, On the convergence of Turán type rules for Cauchy principal value integrals, Calcolo 28 (1991) 21–35.

    Google Scholar 

  11. D.B. Hunter, Some Gauss-type formulae for evaluation of Cauchy principal value integrals, Numer. Math. 19 (1972) 419–424.

    Google Scholar 

  12. R.V. Lascenov, On a class of orthogonal polynomials, Ucen. Zap. Leningrad Gos. Ped. Inst. 89 (1953) 191–206.

    Google Scholar 

  13. F.G. Lether, Subtracting out complex singularities in numerical integration, Math. Comp. 31 (1977) 223–229.

    Google Scholar 

  14. M.A. Kovacević and G.V. Milovanović, Lobatto quadrature formulas for generalized Gegenbauer weight,Conf. on Applied Mathematics 5, Ljubljana (1986) pp. 81–88.

  15. G. Monegto, The numerical evaluation of one-dimensional Cauchy principal value integrals, Computing 29 (1982) 337–354.

    Google Scholar 

  16. P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979).

  17. A. Ossicini and F. Rosati, Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli, Boll. UMI 11 (1975) 224–237.

    Google Scholar 

  18. P. Rabinowitz, Numerical integration in the presence of an interior singularity, J. Comp. Appl. Math. 17 (1987) 31–41.

    Google Scholar 

  19. P. Rabinowitz, Numerical integration based on approximating splines. J. Comp. Appl. Math. 33 (1990) 73–83.

    Google Scholar 

  20. P. Rabinowitz, Application of approximating splines for the solution of Cauchy singular integral equations,Innovative Methods in Numerical Analysis, Bressanone (1992).

  21. H.V. Smith, The evaluation of the error term in some numerical quadrature formulae, Int. J. Numer. Meth. Eng. 15 (1980) 157–160.

    Google Scholar 

  22. H.V. Smith, Global error bounds for Guass-Gegenbauer quadrature, BIT 21 (1981) 481–490.

    Google Scholar 

  23. H.V. Smith, A class of quadrature formulae, J. Inst. Math. Comp. Sci. 3 (1990) 181–183.

    Google Scholar 

  24. D.D. Stancu, Sur quelques formules générales de quadrature du type Gauss-Christoffel, Mathematica 24 (1959) 167–182.

    Google Scholar 

  25. G. Szegö,Orthogonal Polynomials, A.M.S. Colloquium Publ. 23, 4th ed. (Amer. Math. Soc., Providence, RI, 1975).

    Google Scholar 

  26. S. Wrigge and A. Fransén, A general method of approximation. Part I, Math. Comp. 38 (1982) 567–588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work sponsored by Ministero della Ricerca Scientifica e Tecnologia, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gori, L., Santi, E. On the evaluation of Hilbert transforms by means of a particular class of Turán quadrature rules. Numer Algor 10, 27–39 (1995). https://doi.org/10.1007/BF02198294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198294

Keywords

AMS subject classification

Navigation