Skip to main content
Log in

Computation of limit periodic continued fractions. A survey

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Over the last 20 years a large number of algorithms has been published to improve the speed and domain of convergence of continued fractions. In this survey we show that these algorithms are strongly related. Actually, they essentially boil down to two main principles.

We also prove some results on asymptotic expansions of tail values of limit periodic continued fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baltus, Truncation error bounds for the composition of limit periodic linear fractional transformations, J. Comp. Appl. Math. 46 (1993) 395–404.

    Google Scholar 

  2. C. Baltus and W.B. Jones, Truncation error bounds for modified continued fractions with applications to special functions, Numer. Math. 55 (1989) 281–307.

    Google Scholar 

  3. G. Bauer, Von einem Kettenbruch von Euler und einem Theorem von Wallis, Abh. der Kgl. Bayr. Akad. der Wiss., München, Zweite Klasse 11 (1872) 99–116.

    Google Scholar 

  4. B.C. Berndt,Ramanujan's Notebooks (Springer, I: 1985, II: 1989, III: 1991, IV: 1993).

  5. C. Brezinski, Successive modifications of limit period continued fractions, J. Comp. Appl. Math. 19 (1987) 67–74.

    Google Scholar 

  6. C. Brezinski, On the asymptotic behavior of continued fractions. Appl. Numer. Math. 4 (1988) 231–239.

    Google Scholar 

  7. A. Bultheel and P. Levrie, A note on two convergence acceleration methods for ordinary continued fractions, J. Comp. Appl. Math. 24 (1988) 403–409.

    Google Scholar 

  8. J. Gill, Attractive fixed points and continued fractions, Math. Scand. 33 (1973) 261–268.

    Google Scholar 

  9. J. Gill, Infinite compositions of Möbius transformations, Trans. Amer. Math. Soc. 176 (1973) 479–487.

    Google Scholar 

  10. J. Gill, The use of attractive fixed points in accelerating the convergence of limit periodic continued fractions, Proc. Amer. Math. Soc. 47 (1975) 119–126.

    Google Scholar 

  11. J. Gill, Modifying factors for sequences of linear fractional transformations, Det Kgl. Norske Vid. Selsk. Skr., Trondheim 3 (1978).

  12. J. Gill, Truncation error analysis for continued fractionsK(a n /1) where\(\sqrt {|a_n |} + \sqrt {|a_{n - 1} |}< 1\), in:Analytic Theory of Continued Fractions, Lecture Notes in Math. 932 (Springer, New York, 1982) pp. 71–73.

    Google Scholar 

  13. J. Gill, Convergence acceleration for continued fractionsK(a n /1) with lima n =0, in:Analytic Theory of Continued Fractions, Lecture Notes in Math. 932 (Springer, New York, 1982) pp. 67–70.

    Google Scholar 

  14. J. Gill, Convergence factors for continued fractionsK(a n /1),a n →0, Proc. Amer. Math. Soc. 84 (1982) 85–88.

    Google Scholar 

  15. J. Gill, An error estimate for continued fractions, Proc. Amer. Math. Soc. 96 (1986) 71–74.

    Google Scholar 

  16. J.W.L. Glaisher, On the transformation of continued products into continued fractions, Proc. London Math. Soc. 5 (1873).

  17. D.P. Gupta, M.E.H. Ismail and D.R. Masson, Associated continuous Hahn polynomials, Can. J. Math. 43 (1991) 1263–1280.

    Google Scholar 

  18. D.P. Gupta and D.R. Masson, Exceptionalq-Askey-Wilson polynomials and continued fractions, Proc. Amer. Math. Soc. 112 (1991) 717–727.

    Google Scholar 

  19. D.P. Gupta, M.E.H. Ismail and D.R. Masson, Contiguous relations, basic hypergeometric functions and orthogonal polynomials II: Associated bigq-Jacobi polynomials, J. Math. Anal. Appl. 171 (1992) 477–497.

    Google Scholar 

  20. D.P. Gupta and D.R. Masson, Watson's basic analogue of Ramanujan's Entry 40 and its generalization, SIAM J. Math. Anal. 25 (1994) 429–440.

    Google Scholar 

  21. D.P. Gupta and D.R. Masson, Solutions to the associatedq-Askey-Wilson polynomial, recurrence relation, in:Approximation and Computation (Birkhäuser, Cambridge, 1994).

    Google Scholar 

  22. A. Hautot, Convergence acceleration of continued fractions of Poincaré's type, Appl. Numer. Math. 4 (1988) 309–322.

    Google Scholar 

  23. M.E.H. Ismail, J. Letessier, G. Valent and J. Wimp, Two families of associated Wilson polynomials, Can. J. Math. 42 (1990) 659–695.

    Google Scholar 

  24. M.E.H. Ismail and M. Rahman, Associated Askey-Wilson polynomials, Trans. Amer. Math. Soc. 328 (1991) 201–239.

    Google Scholar 

  25. M.E.H. Ismail, E.B. Saff and D.R. Masson, A minimal solution approach to polynomial asymptotics, in:Orthogonal Polynomials and their Applications, eds. C. Brezinski, L. Gori and A. Ronveaux (Baltzer, Basel, 1991) pp. 299–303.

    Google Scholar 

  26. M.E.H. Ismail and D.R. Masson, Two families of orthogonal polynomials related to Jacobi polynomials, Rocky Mountain J. Math. 21 (1991) 359–375.

    Google Scholar 

  27. M.E.H. Ismail and D.R. Masson,q-Hermite polynomials, biorthogonal rational functions, andq-beta integrals, Trans. Amer. Math. Soc., to appear.

  28. L. Jacobsen, Modified approximants for continued fractions. Construction and applications, Det Kgl. Norske Vid. Selsk. Skr., Trondheim 3 (1983) 1–46.

    Google Scholar 

  29. L. Jacobsen, Repeated modifications of limitk-periodic continued fractions, Numer. Math. 47 (1985) 577–595.

    Google Scholar 

  30. L. Jacobsen, Convergence of limitk-periodic continued fractionsK(a n /b n ) and of subsequences of their tails, Proc. London Math. Soc. 51 (1985) 563–576.

    Google Scholar 

  31. L. Jacobsen, General convergence for continued fractions, Trans. Amer. Math. Soc. 294 (1986) 477–485.

    Google Scholar 

  32. L. Jacobsen, Nearness of continued fractions, Math. Scand. 60 (1987) 129–147.

    Google Scholar 

  33. J. Jacobsen, Convergence of limitk-periodic continued fractions in the hyperbolic or loxodromic case, Det Kgl. Norske Vid. Selsk. Skr., Trondheim (1987) 1–23.

  34. L. Jacobsen, W.B. Jones and H. Waadeland, Further results on the computation of the incomplete gamma functions, Lecture Notes in Math. 1199 (Springer, 1986) pp. 67–89.

    Google Scholar 

  35. L. Jacobsen, W.B. Jones and H. Waadeland, [atConvergence acceleration for continued fractionsK(a n /1), wherea n →∞. Lecture Notes in Math. 1237 (Springer, 1987) pp. 177–187.

    Google Scholar 

  36. L. Jacobsen and D.R. Masson, On the convergence of limit periodic continued fractionsK(a n /1) wherea n →−1/4. Part III, Constr. Approx. 6 (1990) 363–373.

    Google Scholar 

  37. L. Jacobsen and D.R. Masson, A sequence of best parabola theorems for continued fractions, Rocky Mountain J. Math. 21 (1991) 377–385.

    Google Scholar 

  38. L. Jacobsen and H., Waadeland, Even and odd parts of limit periodic continued fractions, J. Comp. Appl. Math. 15 (1986) 225–233.

    Google Scholar 

  39. L. Jacobsen and H. Waadeland, Convergence acceleration of limit periodic continued fractions under asymptotic side conditions, Numer. Math. 53 (1988) 285–298.

    Google Scholar 

  40. W.B. Jones and W.J. Thron, Convergence of continued fractions, Can. J. Math. 20 (1968) 1037–1055.

    Google Scholar 

  41. W.B. Jones and W.J. Thron,Continued Fractions. Analytic Theory and Applications, Encyclopedia of Mathematics and Its Applications vol. 11 (Addison-Wesley, Reading, MA, 1980). Now distributed by Cambridge University Press, New York.

    Google Scholar 

  42. W.B. Jones and W.J. Thron, Continued fractions in numerical analysis, Appl. Numer. Math. 4 (1988) 143–230.

    Google Scholar 

  43. A. Lembarki, Acceleration des fractions continues, Thesis, L'université des sciences et techniques de Lille Flandres Artois (1987).

  44. A. Lembarki, Convergence acceleration of limitk-periodic continued fractions, Appl. Numer. Math. 4 (1988) 337–349.

    Google Scholar 

  45. P. Levrie, Improving a method for computing non-dominant solutions of certain second-order recurrence relations of Poincaré-type, Numer. Math. 56 (1989) 501–512.

    Google Scholar 

  46. L. Lorentzen, Analytic continuation of functions represented by continued fractions, revisited, Rocky Mountain J. Math. 23 (1993) 683–706.

    Google Scholar 

  47. L. Lorentzen and H. Waadeland,Continued Fractions with Applications, Studies in Computational Mathematics 3 (Elsevier Science, 1992).

  48. A. Magnus, Riccati acceleration of Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, in:Padé Approximation and its Applications (Bad Honnef, 1983), Lecture Notes in Math. 1071 (Springer, 1984) pp. 213–230.

  49. B. Maskit,Kleinian Groups, Grundlehren der mathematischen Wissenshaften 287 (springer, 1988).

  50. D.R. Masson, The rotating harmonic oscillator eigenvalue problem. 1. Continued fractions and analytic continuation. J. Math. Phys. 24 (1983) 2074–2088.

    Google Scholar 

  51. D.R. Masson, Convergence and analytic continuation for a class of regular C-fractions, Can. Math. Bull. 28 (1985) 411–421.

    Google Scholar 

  52. D.R. Masson, Schrödinger's equation and continued fractions, Int. J. Quantum Chem.: Quantum Chemistry Symposium 21 (1987) 699–712.

    Google Scholar 

  53. D.R. Masson, Difference equations, continued fractions, Jacobi matrices and orthogonal polynomials, in:Nonlinear Numerical Methods and Rational Approximation, ed. A. Cuyt (Reidel, Dordrecht, 1988) pp. 239–257.

    Google Scholar 

  54. D.R. Masson, Difference equations revisited, CMS Conference Proceedings 9, eds. J.S. Feldman and L.M. Rosen. (AMS, Providence, 1988) pp. 73–82.

    Google Scholar 

  55. D.R. Masson, Some continued fractions of Ramanujan and Meixner-Pollaczek polynomials, Can. Math. Bull. 32 (1989) 177–181.

    Google Scholar 

  56. D.R. Masson, A generalization of Ramanujan's best theorem on continued fractions, C. R. Math. Rep. Acad. Sci. 13 (1991) 167–172.

    Google Scholar 

  57. D.R. Masson, Wilson polynomials and some continued fractions of Ramanujan, Rocky Mountain J. Math. 21 (1991) 489–499.

    Google Scholar 

  58. D.R. Masson, Associated Wilson polynomials, Constr. Approx. 7 (1991) 521–534.

    Google Scholar 

  59. A.C. Matos, Extrapolation algorithms based on the asymptotic expansion of the inverse of the error, application to continued fractions, in:Extrapolation and Rational Approximation (Luminy, 1989), J. Comp. Appl. Math. 32 (1990) 179–190.

  60. T. Muir, A theorem in continuants, Phil. Mag. (5)3 (1877) 137–138.

    Google Scholar 

  61. W. Niethammer and H. Wietschorke, On the acceleration of limit periodic continued fractions, Numer. Math. 44 (1984) 129–137.

    Google Scholar 

  62. S. Paszkowski, Convergence acceleration of continued fractions of Poincaré's type 1, Numer. Algor. 2 (1992) 155–170.

    Google Scholar 

  63. O. Perron, Über einen Satz des Herrn Poincaré, J. Reine Angew. Math. 136 (1909) 17–37.

    Google Scholar 

  64. O. Perron,Die Lehre von den Kettenbrüchen, 2. Band, 3. Aufl. (Teubner, Stuttgart, 1957).

    Google Scholar 

  65. S. Pincherle, Sur la génération de systemes récurrents au moyen d'une equation linéaire differentielle, Acta Math. 16 (1893) 341–363.

    Google Scholar 

  66. S. Pincherle, Delle funzioni ipergeometriche e di varie questioni ad esse attinenti, Giorn. Mat. Battaglini 32 (1894) 209–291, Opere Selecte, Vol.,1, pp. 273–357.

    Google Scholar 

  67. H. Poincaré, Sur les equations linéaires aux differentielles ordinaires et aux differences finis, Amer. J. Math. 7 (1885) 203–258.

    Google Scholar 

  68. H.-J. Runckel, Continuity on the boundary and analytic continuation of continued fractions, Math. Z. 148 (1976) 189–205.

    Google Scholar 

  69. H.-J. Runckel, Meromorphic extension of analytic continued fractions across the line of nonconvergence, Rocky Mountain J. Math. 21 (1991) 539–556.

    Google Scholar 

  70. H.-J Runckel, Meromorphic extension of analytic continued fractions across their divergence line with applications to orthogonal polynomials, Trans. Amer. Math. Soc. 334 (1992) 183–212.

    Google Scholar 

  71. J.J. Sylvester, Note on a new continued fraction applicable to the quadrature of the circle, Phil. Mag. London 84 (1869) 373–375.

    Google Scholar 

  72. W.J. Thron, On parabolic convergence regions for continued fractions, Math. Z. 69 (1958) 173–182.

    Google Scholar 

  73. W.J. Thron and H. Waadeland, Accelerating convergence of limit periodic continued fractionsK(a n /1), Numer. Math. 34 (1980) 155–170.

    Google Scholar 

  74. W.J. Thron and H. Waadeland, Analytic continuation of functions defined by means of continued fractions, Math. Scand. 47 (1980) 72–90.

    Google Scholar 

  75. W.J. Thron and H. Waadeland, Convergence questions for limit periodic continued fractions, Rocky Mountain J. Math. 11 (1981) 641–657.

    Google Scholar 

  76. W.J. Thron and H. Waadeland, On a certain transformation of continued fractions, in:Analytic Theory of Continued Fractions, Proceedings 1981, Lecture Notes in Math. 932 (Springer, 1982) pp. 225–240.

  77. W.J. Thron and H. Waadeland, Modifications of continued fractions, a survey, in:Analytic Theory of Continued Fractions, Lecture Notes in Math. 932 (Springer, New York, 1982) pp. 38–66.

    Google Scholar 

  78. W.J. Thron and H. Waadeland, Truncation error bounds for limit periodic continued fractions, Math. Comp. 40 (1983) 589–597.

    Google Scholar 

  79. H. Waadeland, A convergence property for certain T-fraction expansions, Det Kgl. Norske Vid. Selsk. Skr., Trondheim 9 (1966) 1–22.

    Google Scholar 

  80. H. Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984) 57–64.

    Google Scholar 

  81. H. Waadeland, A note on partial derivatives of continued fractions, in:Analytic Theory of Continued Fractions, vol. 2 (Pitlochry/Aviemore, 1985), Lecture Notes in Math. 1199 (Springer, 1986) pp. 294–299.

  82. H. Waadeland, Local properties of continued fractions, in:Rational Approximation and Applications in Mathematics and Physics (Lan cut, 1985), Lecture Notes in Math. 1237 (Springer, 1987) pp. 239–250.

  83. H. Waadeland, Derivatives of continued fractions with applications to hypergeometric functions, J. Comp. Appl. Math. 19 (1987) 161–169.

    Google Scholar 

  84. H. Waadeland, Computation of continued fractions by square-root modification: reflections and examples, Appl. Numer. Math. 4 (1988) 361–375.

    Google Scholar 

  85. H. Waadeland, Some recent results in the analytic theory of continued fractions, in:Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), Math. Appl. 43 (Reidel, Dordrecht, Boston, MA, 1988) pp. 299–333.

    Google Scholar 

  86. J. Wimp,Computation with Recurrence Relations (Pitman, London, 1983).

    Google Scholar 

  87. J. Wimp, Some explicit Padé approximants for the function Φ′/Φ and a related quadrature formula involving Bessel functions, SIAM J. Math. Anal. 16 (1985) 887–895.

    Google Scholar 

  88. J. Wimp, Explicit formulas for the associated Jacobi polynomials and some applications, Can. J. Math. 39 (1987) 983–1000.

    Google Scholar 

  89. J. Wimp, Pollaczek polynomials and Padé approximants: some closed-form expressions, J. Comput. Appl. Math. 32 (1990) 301–310.

    Google Scholar 

  90. J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985) 162–176.

    Google Scholar 

  91. P. Wynn, Converging factors for continued fractions, Numer. Math. 1 (1959) 272–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Luigi Gatteschi on his seventieth birthday

This research was partially supported by The Norwegian Research Council and by the HMC project ROLLS, under contract CHRX-CT93-0416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorentzen, L. Computation of limit periodic continued fractions. A survey. Numer Algor 10, 69–111 (1995). https://doi.org/10.1007/BF02198297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198297

Keywords

AMS subject classification

Navigation