Skip to main content
Log in

A concept of fuzzy transition probabilities

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Starting from fuzzy real numbers with an arbitrary lattice of belief and following the extension principle, we develop concepts of fuzzy probabilities, transition probabilities and random variables and of their combinations, and show that these concepts are consistent. We derive some results on fuzzy real numbers, on the expectation of fuzzy random variables and on fuzzy stochastic processes. To sketch the range of applications of fuzzy stochastics, we give two examples that show how real-world problems may be modeled by means of fuzzy probabilities and that give small numerical examples. Moreover, we give a brief outlook for a possible expansion of our theory to fuzzy Markovian decision processes by means of a partial order on the set of all fuzzy real numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-P. Adlassning, Fuzzy set theory in medical diagnosis, IEEE Trans. Syst., Man, Cybern. SMC-16(1986)260–265.

    Google Scholar 

  2. J. F. Baldwin and B. W. Pilsworth, Dynamic programming for fuzzy systems with fuzzy environment, J. Math. Anal. Appl. 85(1982)1–23.

    Google Scholar 

  3. R. A. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment, Manag. Sci. 17(1970) 141–164.

    Google Scholar 

  4. G. Birkhoff,Lattice Theory (Americal Mathematical Society, Providence, RI, 1973).

    Google Scholar 

  5. R. Hanuschek, Fuzzy Sets versus Wahrscheinlichkeiten — zur Eignung beider Konzepte für die quantitative Investitionsplanung unter Unsicherheit, in:Operations Research Proc. 1985 (Springer, Berlin, 1986), pp. 437–442.

    Google Scholar 

  6. U. D. Holzbaur, Fixed point theorems for discounted Markov decision processes, J. Math. Anal. Appl. 116(1986)594–597.

    Google Scholar 

  7. U. D. Holzbaur, Optimierungsprobleme mit verbandswertigen Gewinnfunktionen, in:Operations Research Proc. 1986 (Springer, Berlin, 1987), pp. 661–665.

    Google Scholar 

  8. R. A. Howard,Dynamic Programming and Markov Processes (Wiley, New York, 1960).

    Google Scholar 

  9. R. Kruse and K. D. Meyer,Statistics with Vague Data (Reidel, Dordrecht, 1987).

    Google Scholar 

  10. C. V. Negoita,Expert Systems and Fuzzy Sets (Benjamin-Cummings, Menlo Park, CA, 1985).

    Google Scholar 

  11. C. V. Negoita and D. A. Ralescu,Applications of Fuzzy Sets to Systems Analysis (Birkhäuser, Basel, 1975).

    Google Scholar 

  12. W. Rödder and H. J. Zimmermann, Analyse, Beschreibung und Optimierung von unscharf formulierten Problemen, Z. Oper. Res. 21(1977)1–18.

    Google Scholar 

  13. C.-P. Rollinger, How to represent knowledge-aspects of uncertain reasoning,Proc. IJCAI 8, Karlsruhe (1983).

  14. T. Whalen, Decision-making under uncertainty with various assumptions about available information, IEEE Trans. Syst., Man, Cybern. SMC-14(1984)888–900.

    Google Scholar 

  15. R. R. Yager, Fuzzy subsets with uncertain membership grade, IEEE Trans. Syst., Man, Cybern. SMC-14(1984)271–275.

    Google Scholar 

  16. L. A. Zadeh, Fuzzy Sets, Inf. Control 8(1965)338–353.

    Google Scholar 

  17. L. A. Zadeh, Probability measures on fuzzy events, J. Math. Anal. Appl. 23(1968)421–427.

    Google Scholar 

  18. L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning, Parts 1, 2, 3, Inf. Sci. 8(1975)119–249; 8, 301–357; 9, 43–80.

    Google Scholar 

  19. L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst., Man, Cybern. SMC-3(1973)28–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzbaur, U.D. A concept of fuzzy transition probabilities. Ann Oper Res 32, 35–50 (1991). https://doi.org/10.1007/BF02204827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02204827

Keywords