Abstract
Starting from fuzzy real numbers with an arbitrary lattice of belief and following the extension principle, we develop concepts of fuzzy probabilities, transition probabilities and random variables and of their combinations, and show that these concepts are consistent. We derive some results on fuzzy real numbers, on the expectation of fuzzy random variables and on fuzzy stochastic processes. To sketch the range of applications of fuzzy stochastics, we give two examples that show how real-world problems may be modeled by means of fuzzy probabilities and that give small numerical examples. Moreover, we give a brief outlook for a possible expansion of our theory to fuzzy Markovian decision processes by means of a partial order on the set of all fuzzy real numbers.
Similar content being viewed by others
References
K.-P. Adlassning, Fuzzy set theory in medical diagnosis, IEEE Trans. Syst., Man, Cybern. SMC-16(1986)260–265.
J. F. Baldwin and B. W. Pilsworth, Dynamic programming for fuzzy systems with fuzzy environment, J. Math. Anal. Appl. 85(1982)1–23.
R. A. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment, Manag. Sci. 17(1970) 141–164.
G. Birkhoff,Lattice Theory (Americal Mathematical Society, Providence, RI, 1973).
R. Hanuschek, Fuzzy Sets versus Wahrscheinlichkeiten — zur Eignung beider Konzepte für die quantitative Investitionsplanung unter Unsicherheit, in:Operations Research Proc. 1985 (Springer, Berlin, 1986), pp. 437–442.
U. D. Holzbaur, Fixed point theorems for discounted Markov decision processes, J. Math. Anal. Appl. 116(1986)594–597.
U. D. Holzbaur, Optimierungsprobleme mit verbandswertigen Gewinnfunktionen, in:Operations Research Proc. 1986 (Springer, Berlin, 1987), pp. 661–665.
R. A. Howard,Dynamic Programming and Markov Processes (Wiley, New York, 1960).
R. Kruse and K. D. Meyer,Statistics with Vague Data (Reidel, Dordrecht, 1987).
C. V. Negoita,Expert Systems and Fuzzy Sets (Benjamin-Cummings, Menlo Park, CA, 1985).
C. V. Negoita and D. A. Ralescu,Applications of Fuzzy Sets to Systems Analysis (Birkhäuser, Basel, 1975).
W. Rödder and H. J. Zimmermann, Analyse, Beschreibung und Optimierung von unscharf formulierten Problemen, Z. Oper. Res. 21(1977)1–18.
C.-P. Rollinger, How to represent knowledge-aspects of uncertain reasoning,Proc. IJCAI 8, Karlsruhe (1983).
T. Whalen, Decision-making under uncertainty with various assumptions about available information, IEEE Trans. Syst., Man, Cybern. SMC-14(1984)888–900.
R. R. Yager, Fuzzy subsets with uncertain membership grade, IEEE Trans. Syst., Man, Cybern. SMC-14(1984)271–275.
L. A. Zadeh, Fuzzy Sets, Inf. Control 8(1965)338–353.
L. A. Zadeh, Probability measures on fuzzy events, J. Math. Anal. Appl. 23(1968)421–427.
L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning, Parts 1, 2, 3, Inf. Sci. 8(1975)119–249; 8, 301–357; 9, 43–80.
L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst., Man, Cybern. SMC-3(1973)28–44.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Holzbaur, U.D. A concept of fuzzy transition probabilities. Ann Oper Res 32, 35–50 (1991). https://doi.org/10.1007/BF02204827
Issue Date:
DOI: https://doi.org/10.1007/BF02204827