Abstract
For additive functions over ordered sets, a minimum representation is given in case the ordered set has a particular deviation property. Additive functions are known to be special supermodular functions on power sets and in probability calculus, they are related to, for example, capacities and distribution functions of random sets. Their capability to encode vague information is stressed.
Similar content being viewed by others
References
M. Aigner,Kombinatorik I (Springer, Berlin, 1975).
G. Birkhoff,Lattice Theory (American Mathematical Society, Providence, 1940; Reprint of 3rd ed., 1984).
R. K. Bhatnagar and L. N. Kanal, Handling uncertain information: A review of numeric and non-numeric methods, in:Uncertainty in Artificial Intelligence, Vol. 4, ed. L. N. Kanal and J. F. Lemmer (North-Holland, Amsterdam, 1988).
P. J. Huber and V. Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist. 1(1973)251–263.
E. L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976).
L. Lovász, Supermodular functions and convexity, in:Mathematical Programming, ed. A. Bachem, M. Grötschel and B. Korte (Springer, Berlin, 1983), pp. 235–257.
H. T. Nguyen, On random sets and belief functions, J. Math. Anal. Appl. 65(1978)531–542.
G.-C. Rota, On the foundation of combinatorial theory I. Theory of Möbius functions, Z. für Wahrscheinlichkeitstheorie 2(1964)340–368.
G. Shafer,A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976).
D. Stoyan, W. S. Kendall and J. Mecke,Stochastic Geometry and its Applications (Wiley, Chichester, 1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kämpke, T. Additive functions and their application to uncertain information. Ann Oper Res 32, 51–66 (1991). https://doi.org/10.1007/BF02204828
Issue Date:
DOI: https://doi.org/10.1007/BF02204828