Skip to main content
Log in

A blossoming approach to accuracy of the degree elevation process

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

It is known that the sequence of control polygons of a Bézier-De Casteljau curve or surface obtained by the “degree elevation” process converges towards the underlying curve and surface. The notion of blossoming or polar form associated with a polynomial allows to control the accuracy of this convergence and, as a by-product, to give a new and completer proof of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bézier, Procédé de définition numérique des courbes et surfaces non mathématiques, système Unisurf, Automatisme 13 (1968) 189–196.

    Google Scholar 

  2. E. Cohen and L. L. Schumaker, Rates of convergence of control polygons, Comput. Aided Geom. Design 2 (1985) 229–235.

    Google Scholar 

  3. P. De Casteljau, Outillage, méthode de calcul, Rapport technique, A. Citroën, Paris (1959).

    Google Scholar 

  4. P. De Casteljau, Courbes et surfaces à pôles, Rapport technique, A. Citroën, Paris (1963).

    Google Scholar 

  5. P. De Casteljau,Formes à Pôles (Hermès, Paris, 1985).

    Google Scholar 

  6. G. Farin, Subsplines über Dreiecken, Ph.D. Thesis, Technical University Braunschweig (1979).

    Google Scholar 

  7. G. Farin, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design 3 (1986) 83–128.

    Google Scholar 

  8. J. C. Fiorot and P. Jeannin,Courbes et Surfaces Rationnelles, Applications à la CAO (Masson, Paris, 1989). English translation:Rational Curves and Surfaces, Applications to CAD (Wiley, Chichester, 1992).

    Google Scholar 

  9. J. C. Fiorot and P. Jeannin, A blossoming approach to accuracy of the degree elevation process, Research report 94-3, Laboratoire LIMAV, Univ. de Valenciennes, France (1994) and Les Cahiers du Laboratoire de Mathématiques Appliquées, LMA n5, Univ. du Littoral, Calais, France (1994).

    Google Scholar 

  10. J. C. Fiorot and P. Jeannin, A blossoming approach to accuracy of the degree elevation process, C. R. Acad. Sci. Paris Sér. I 322 (1996) 593–598.

    Google Scholar 

  11. H. Prautzsch and L. Kobbelt, Convergence of subdivision and degree elevation, Adv. Comput. Math. 2 (1994) 143–154.

    Google Scholar 

  12. L. Ramshaw, Blossoming: a connect-the-dots approach to splines, Technical Report, Digital Systems Research Center, Palo Alto (1987).

    Google Scholar 

  13. L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989) 323–356.

    Google Scholar 

  14. J. Zhou, The positivity and convexity of Bézier polynomials over triangles, Ph. D. Thesis, Beijing University (1985).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. J. Laurent

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorot, J.C., Jeannin, P. A blossoming approach to accuracy of the degree elevation process. Numer Algor 13, 265–306 (1996). https://doi.org/10.1007/BF02207697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207697

Keywords

AMS subject classification