Abstract
It is known that the sequence of control polygons of a Bézier-De Casteljau curve or surface obtained by the “degree elevation” process converges towards the underlying curve and surface. The notion of blossoming or polar form associated with a polynomial allows to control the accuracy of this convergence and, as a by-product, to give a new and completer proof of convergence.
Similar content being viewed by others
References
P. Bézier, Procédé de définition numérique des courbes et surfaces non mathématiques, système Unisurf, Automatisme 13 (1968) 189–196.
E. Cohen and L. L. Schumaker, Rates of convergence of control polygons, Comput. Aided Geom. Design 2 (1985) 229–235.
P. De Casteljau, Outillage, méthode de calcul, Rapport technique, A. Citroën, Paris (1959).
P. De Casteljau, Courbes et surfaces à pôles, Rapport technique, A. Citroën, Paris (1963).
P. De Casteljau,Formes à Pôles (Hermès, Paris, 1985).
G. Farin, Subsplines über Dreiecken, Ph.D. Thesis, Technical University Braunschweig (1979).
G. Farin, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design 3 (1986) 83–128.
J. C. Fiorot and P. Jeannin,Courbes et Surfaces Rationnelles, Applications à la CAO (Masson, Paris, 1989). English translation:Rational Curves and Surfaces, Applications to CAD (Wiley, Chichester, 1992).
J. C. Fiorot and P. Jeannin, A blossoming approach to accuracy of the degree elevation process, Research report 94-3, Laboratoire LIMAV, Univ. de Valenciennes, France (1994) and Les Cahiers du Laboratoire de Mathématiques Appliquées, LMA n5, Univ. du Littoral, Calais, France (1994).
J. C. Fiorot and P. Jeannin, A blossoming approach to accuracy of the degree elevation process, C. R. Acad. Sci. Paris Sér. I 322 (1996) 593–598.
H. Prautzsch and L. Kobbelt, Convergence of subdivision and degree elevation, Adv. Comput. Math. 2 (1994) 143–154.
L. Ramshaw, Blossoming: a connect-the-dots approach to splines, Technical Report, Digital Systems Research Center, Palo Alto (1987).
L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989) 323–356.
J. Zhou, The positivity and convexity of Bézier polynomials over triangles, Ph. D. Thesis, Beijing University (1985).
Author information
Authors and Affiliations
Additional information
Communicated by P. J. Laurent
Rights and permissions
About this article
Cite this article
Fiorot, J.C., Jeannin, P. A blossoming approach to accuracy of the degree elevation process. Numer Algor 13, 265–306 (1996). https://doi.org/10.1007/BF02207697
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02207697
Keywords
- polar form
- blossom
- Bézier-De Casteljau curve
- patch
- control polygons
- “degree elevation”
- length elevation
- length and width elevation
- height elevation
- convergence
- bounds
- accuracy control