Skip to main content

Advertisement

Log in

Convergence properties of discrete analogs of orthogonal polynomials

Konvergenzeigenschaften von Polynomen, die orthogonal sind in bezug auf ein diskretes Skalarprodukt

  • Published:
Computing Aims and scope Submit manuscript

Summary

If (,) is an inner product on [a, b], and if [,] N is a discrete inner product analogous to (,), and such that [1, 1] N =(1, 1), then, a sufficient condition that the discrete orthogonal polynomials converge to the corresponding continuous orthogonal polynomials likeN −p, is that [1,t k] N =(1,t k)+O(N −p),k=1, 2, ... A similar result holds for correspondingFourier segments.

Zusammenfassung

Falls (,) ein Skalarprodukt auf [a, b] darstellt und [,] N das entsprechende diskrete Skalarprodukt bedeutet, wobei [1, 1] N =(1, 1) gilt, dann ist die Bedingung [1,t k] N =(1,t k)+0(N −p),k=1, 2, ..., hinreichend dafür, daß die diskreten orthogonalen Polynome zu den entsprechenden kontinuierlichen Polynomen wieN −p konvergieren. Ein ähnliches Ergebnis gilt für entsprechendeFouriersegmente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Reference

  1. Davis, P. J.: Interpolation and Approximation, Blaisdell Press. 1963.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, M.W. Convergence properties of discrete analogs of orthogonal polynomials. Computing 5, 1–5 (1970). https://doi.org/10.1007/BF02234245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02234245

Keywords