Summary
If (,) is an inner product on [a, b], and if [,] N is a discrete inner product analogous to (,), and such that [1, 1] N =(1, 1), then, a sufficient condition that the discrete orthogonal polynomials converge to the corresponding continuous orthogonal polynomials likeN −p, is that [1,t k] N =(1,t k)+O(N −p),k=1, 2, ... A similar result holds for correspondingFourier segments.
Zusammenfassung
Falls (,) ein Skalarprodukt auf [a, b] darstellt und [,] N das entsprechende diskrete Skalarprodukt bedeutet, wobei [1, 1] N =(1, 1) gilt, dann ist die Bedingung [1,t k] N =(1,t k)+0(N −p),k=1, 2, ..., hinreichend dafür, daß die diskreten orthogonalen Polynome zu den entsprechenden kontinuierlichen Polynomen wieN −p konvergieren. Ein ähnliches Ergebnis gilt für entsprechendeFouriersegmente.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Reference
Davis, P. J.: Interpolation and Approximation, Blaisdell Press. 1963.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wilson, M.W. Convergence properties of discrete analogs of orthogonal polynomials. Computing 5, 1–5 (1970). https://doi.org/10.1007/BF02234245
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02234245