Summary
This paper deals with the approximation of weak solutions of non-linear elliptic equations of the type
where eitherf=f(x, u) orf=f(x, u, ∇u). The differential equation is replaced by difference equations and convergence of the solutions of the difference equations to the solution of the differential equation is proven by functional analytic means. This enables us to give a unified treatment of the convergence of solutions of elliptic difference equations to the solution of the elliptic differential equation.
Zusammenfassung
Diese Arbeit behandelt die Approximation von schwachen Lösungen nicht-linearer elliptischer Differentialgleichungen des Typs
wof=f(x, u) oderf=f(x, u, ∇u). Die Differentialgleichung wird durch Differenzengleichungen ersetzt und die Konvergenz der Lösungen der Differenzengleichungen wird mit Hilfe der Funktionalanalysis bewiesen. Dies ermöglicht uns, eine einheitliche Behandlung der Konvergenz von Lösungen von elliptischen Differenzengleichungen gegen die Lösung einer elliptischen Differentialgleichung anzugeben.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Bibliography
Bers, L.: On Mildly Nonlinear Partial Differential Equations of Elliptic Type. J. Res. Nat. Bur. Standards Sect. B,51, 229–236 (1953).
Bittner, L.: Mehrpunktverfahren zur Auflösung von Gleichungssystemen. ZAMM,43, 111–126 (1963).
Collatz, L.: Funktionalanalysis und Numerische Mathematik. Berlin: Springer-Verlag, 1964.
Courant, R. andD. Hilbert: Methods of Mathematical Physics. Vol. II, New York, Wiley (Interscience), 1962.
Douglas, Jr.J.: Alternating Direction Iteration for Mildly Nonlinear Elliptic Difference Equations. Numer. Math.,4, 301–302 (1962).
Greenspan, D. andS. V. Parter: Numerical Methods for Mildly Nonlinear Elliptic Partial Differential Equations II. Numer. Math.,7, 129–146 (1965).
Gunn, J. E.: On the Two-Stage Iterative Method of Douglas for Mildly Nonlinear Elliptic Difference Equations. Numer. Math.,6, 243–249 (1964).
Lees, M.: Discrete Methods for Nonlinear Two-Point Boundary Value Problems. Numerical Solution of Partial Differential Equations. 59–72, New York, Academic Press, 1966.
Lees, M.: A Unified Treatment of Discrete Methods for the Numerical Solution of Nonlinear Two-Point Boundary Value Problems (to appear). Text given in SIAM Distinguished Lecture Series.
McAllister, G. T.: Quasilinear Uniformly Elliptic Partial Differential Equations and Difference Equations. J. SIAM Numer. Anal.,13, 13–33 (1966).
McShane, E. J.: Extension of Range of Functions. Bull. AMS,40, 837–842 (1934).
Parter, S. V.: Numerical Methods for Mildly Nonlinear Elliptic Partial Differential Equations I. Numer. Math.,7, 113–128 (1965).
Parter, S. V.: Numerical Computation of Solutions of Δu=f (P, u). Numerical Solution of Partial Differential Equations. 73–82. New York, Academic Press, 1966.
Schechter, S.: Iteration Methods for Nonlinear Problems. Trans. AMS, 179–189 (1962).
Schmidt, J. W.: Eine Übertragung der Regula Falsi auf Gleichungen inBanachräumen I, II, ZAMM,43, 1–8 (1963), ZAMM,43, 97–110 (1963).
Smirnov, W. I.: Lehrgang der Höheren Mathematik, Teil V, Berlin, VEB Deutscher Verlag der Wissenschaften, 1961, (Übersetzung aus dem Russischen)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Allgower, E., Guenther, R. A functional analytic approach to the numerical solution of nonlinear elliptic equations. Computing 2, 25–33 (1967). https://doi.org/10.1007/BF02235510
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02235510