Zusammenfassung
Systeme linearer rekurrenter Relationen erster Ordnung, und auch skalare Rekursionsformeln höherer Ordnung, werden auf numerische Stabilität hin untersucht. Beispiele heftiger Instabilität werden vorgeführt im Zusammenhang mit skalaren Rekursionsformeln erster und zweiter Ordnung. Auf Mittel zur Eliminierung von Instabilität wird hingewiesen.
Summary
Systems of linear first-order recurrence relations, as well as higher-order scalar recurrence relations, are analyzed with respect to numerical stability. Examples of severe numerical instability are presented involving scalar first- and second-order recurrence relations. Devices for counteracting instability are indicated.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Literatur
Amos, D. E., andW. G. Bulgren: On the computation of a bivariate t-distribution. Math. Comp.23, 319–333 (1969).
Gautschi, W.: Recursive computation of certain integrals. J. Assoc. Comput. Mach.8, 21–40 (1961).
Gautschi, W.: Computation of successive derivatives of f(z)/z. Math. Comp.20, 209–214 (1966).
Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev.9, 24–82 (1967).
Gautschi, W.: An application of minimal solutions of three-term recurrence relations to Coulomb wave functions. Aequationes Math.2, 171–176 (1969).
Gautschi, W.: Efficient computation of the complex error function. SIAM J. Numer. Anal.7, 187–198 (1970).
Gautschi, W., andW. F. Cahill: Exponential integral and related functions, ch. 5. In: Handbook of Mathematical Functions, p. 227–293 (Abramowitz, M., andI. A. Stegun, Hrsg.). NBS Appl. Math. Ser.55 (1964).
Gautschi, W., andB. J. Klein: Recursive computation of certain derivatives — a study of error propagation. Comm. ACM13, 7–9 (1970).
Miller, K. S.: Linear Difference Equations. New York-Amsterdam: W. A. Benjamin, Inc. 1968.
Oliver, J.: Relative error propagation in the recursive solution of linear recurrence relations. Numer. Math.9, 323–340 (1967).
Oliver, J.: The numerical solution of linear recurrence relations. Numer. Math.11, 349 to 360 (1968).
Oliver, J.: An extension of Olver's error estimation technique for linear recurrence relations. Numer. Math.12, 459–467 (1968).
Olver, F. W. J.: Error analysis of Miller's recurrence algorithm. Math. Comp.18, 65–74 (1964).
Olver, F. W. J.: Numerical solution of second-order linear difference equations. J. Res. Nat. Bur. Standards71B, 111–129 (1967).
Olver, F. W. J.: Bounds for the solutions of second-order linear difference equations. J. Res. Nat. Bur. Standards71B, 161–166 (1967).
Pincherle, S.: Delle funzioni ipergeometriche e di varie questioni ad esse attinenti. Giorn. Mat. Battaglini32, 209–291 (1894). (Auch in: Opere Scelte, Vol. 1, S. 273–357.)
Tait, R.: Error analysis of recurrence equations. Math. Comp.21, 629–638 (1967).
Thacher, H. C., Jr.: Series solutions to differential equations by backward recurrence. Proc. Intern. Federation of Information Processing (IFIP) Congress 71.
Wimp, J.: On recursive computation. Aerospace Research Laboratory Report ARL69-0186 (November 1969), Wright-Patterson Air Force Base, Ohio.
Wimp, J.: Recent developments in recursive computation. SIAM Studies in Appl. Math.6, 110–123 (1970).
Wimp, J., andY. L. Luke: An algorithm for generating sequences defined by nonhomogeneous difference equations. Rend. Circ. Mat. Palermo18, 251–275 (1969).
Author information
Authors and Affiliations
Additional information
Mit 3 Abbildungen
Erweiterte Fassung eines Vortrages, gehalten an Mathematischen Instituten in Florenz, Pisa, Amsterdam, Hamburg und München. Die Arbeit wurde zum Teil durch ein Fulbright-Forschungs-stipendium gefördert.
Rights and permissions
About this article
Cite this article
Gautschi, W. Zur Numerik rekurrenter Relationen. Computing 9, 107–126 (1972). https://doi.org/10.1007/BF02236961
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02236961