Skip to main content
Log in

Convergence of linear multistep methods for volterra first kind equations with k(t,t)≡0

Konvergenz linearer Mehrschrittverfahren für Volterrasche Integralgleichungen erster Art mit k(t,t)≡0

  • Published:
Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with Volterra integral equations of the first kind whose kernel,k(t,s), is identically zero whent=s. The concepts of zero-stability and weak zero-stability are introduced and convergence results under the assumption that the truncation error has an asymptotic expansion with a certain number of terms are presented. Simple numerical examples verifying these rates of convergence are given.

Zusammenfassung

Diese Arbeit befaßt sich mit Volterraschen Integralgleichungen erster Art, deren Kernk(t,s) fürt=s identisch verschwindet. Die Begriffe Null-Stabilität und schwache Null-Stabilität werden eingeführt und Konvergenzresultate unter der Voraussetzung angegeben, daß der Verfahrensfehler eine asymptotische Entwicklung mit einer gewissen Anzahl von Gliedern besitzt. Weiters werden einfache numerische Beispiele angegeben, die diese Konvergenzraten bestätigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andrade, Célia, McKee, S.: On optimal high accuracy linear multistep methods for first kind Volterra integral equations. BIT19, 1–11 (1979).

    Google Scholar 

  • Holyhead, P. A. W., McKee, S., Taylor, P. J.: Multistep methods for solving linear Volterra integral equations of the first kind. SINUM12, 698–711 (1975).

    Google Scholar 

  • Holyhead, P. A. W., McKee, S.: Stability and convergence of multistep methods for linear Volterra integral equations of the first kind. SINUM13, 269–292 (1976).

    Google Scholar 

  • Linz, P.: Numerical methods for Volterra integral equations of the first kind. Compt. J.12, 393–397 (1969).

    Google Scholar 

  • McKee, S.: Best convergence rates of linear multistep methods for Volterra first kind equations. Computing21, 343–358 (1979).

    Google Scholar 

  • McKee, S.: Discretisation methods and generalised isoclinal matrices. (Submitted for publication.)

  • Williams, H., McKee, S., Brunner, H.: The numerical stability of multistep methods for convolution Volterra integral equations—nonsingular equations. (Submitted for publication.)

  • Yosida, K.: Lectures on Differential and Integral Equations. Wiley, Interscience, 1960.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, C., Franco, N.B. & McKee, S. Convergence of linear multistep methods for volterra first kind equations with k(t,t)≡0. Computing 27, 189–204 (1981). https://doi.org/10.1007/BF02237977

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02237977

Keywords