Abstract
New results are given on error in floating point multiplication. Certain choices of the base minimize the mean multiplicative error. These choices depend on which measure of error is selected. Some measures are included which were not in earlier studies. Some of the results have application to computer design.
Zusammenfassung
Es werden einige neue Resultate bezüglich des Fehlers bei der Gleitkomma-Multiplikation mitgeteilt. In Abhängigkeit vom Maß für den Fehler wird festgestellt, für welche Basen der mittlere Multiplikationsfehler minimal wird; dabei sind gegenüber früheren Untersuchungen neue Fehlermaße einbezogen worden. Ein Teil der Ergebnisse hat Nutzanwendungen auf den Computerentwurf.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
BFGL [79]: Bustoz, J., Feldstein, A., Goodman, R., Linnainmaa, S., Improved trailing digits estimates applied to optimal computer arithmetic. J. ACM26, 716–730 (1979).
Cody [73]: Cody, W. J., jr., Static and dynamic numerical characteristics of floating point arithmetic. IEEE Transactions on Electronic ComputersC-22, 598–601 (1973).
Feldstein and Goodman [76]: Feldstein, A., Goodman, R., Convergence estimates for the distribution of trailing digits. J. ACM23, 287–297 (1976).
Fosdick [78]: Fosdick, L., private communication.
Goodman and Feldstein [75]: Goodman, R., Feldstein, A., Round-off error in products. Computing15, 263–273 (1975).
Goodman and Feldstein [77]: Goodman, R., Feldstein, A., Effect of guard digits and normalization options on floating point multiplication. Computing18, 93–106 (1977).
KCS [81]: Kahan, W., Coonen, J., Stone, H., et al.: A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of IEEE Task P754. Computer14, 51–62 (1981).
Knuth [69]: Knuth, D., The art of computer programming, Vol. 2: Semi-Numerical Algorithms. Reading, Mass.: Addison-Wesley 1969.
McKeeman [67]: McKeeman, W., Representation error for real numbers in binary computer arithmetic. IEEE Transactions on Electronic Computers (Short Notes)EC-16, 682–683 (1967).
Urabe [68]: Urabe, M., Roundoff error distribution in fixed-point multiplication and a remark about the rounding rule. SINUM5, 202–210 (1968).
Author information
Authors and Affiliations
Additional information
Part of this work was supported by National Science Foundation Grants No. MCS77-23289 and MCS-8004231. Part of this work was performed under the auspices of the U.S. Department of Energy while in residence at the Applied Mathematics Division of Argonne National Laboratory.
Rights and permissions
About this article
Cite this article
Goodman, R. Some models of error in floating point multiplication. Computing 27, 227–236 (1981). https://doi.org/10.1007/BF02237980
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02237980