Skip to main content

Advertisement

Log in

Some models of error in floating point multiplication

Einige Fehlermodelle bei Gleitkomma-Multiplikation

  • Published:
Computing Aims and scope Submit manuscript

Abstract

New results are given on error in floating point multiplication. Certain choices of the base minimize the mean multiplicative error. These choices depend on which measure of error is selected. Some measures are included which were not in earlier studies. Some of the results have application to computer design.

Zusammenfassung

Es werden einige neue Resultate bezüglich des Fehlers bei der Gleitkomma-Multiplikation mitgeteilt. In Abhängigkeit vom Maß für den Fehler wird festgestellt, für welche Basen der mittlere Multiplikationsfehler minimal wird; dabei sind gegenüber früheren Untersuchungen neue Fehlermaße einbezogen worden. Ein Teil der Ergebnisse hat Nutzanwendungen auf den Computerentwurf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • BFGL [79]: Bustoz, J., Feldstein, A., Goodman, R., Linnainmaa, S., Improved trailing digits estimates applied to optimal computer arithmetic. J. ACM26, 716–730 (1979).

    Google Scholar 

  • Cody [73]: Cody, W. J., jr., Static and dynamic numerical characteristics of floating point arithmetic. IEEE Transactions on Electronic ComputersC-22, 598–601 (1973).

    Google Scholar 

  • Feldstein and Goodman [76]: Feldstein, A., Goodman, R., Convergence estimates for the distribution of trailing digits. J. ACM23, 287–297 (1976).

    Google Scholar 

  • Fosdick [78]: Fosdick, L., private communication.

  • Goodman and Feldstein [75]: Goodman, R., Feldstein, A., Round-off error in products. Computing15, 263–273 (1975).

    Google Scholar 

  • Goodman and Feldstein [77]: Goodman, R., Feldstein, A., Effect of guard digits and normalization options on floating point multiplication. Computing18, 93–106 (1977).

    Google Scholar 

  • KCS [81]: Kahan, W., Coonen, J., Stone, H., et al.: A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of IEEE Task P754. Computer14, 51–62 (1981).

    Google Scholar 

  • Knuth [69]: Knuth, D., The art of computer programming, Vol. 2: Semi-Numerical Algorithms. Reading, Mass.: Addison-Wesley 1969.

    Google Scholar 

  • McKeeman [67]: McKeeman, W., Representation error for real numbers in binary computer arithmetic. IEEE Transactions on Electronic Computers (Short Notes)EC-16, 682–683 (1967).

    Google Scholar 

  • Urabe [68]: Urabe, M., Roundoff error distribution in fixed-point multiplication and a remark about the rounding rule. SINUM5, 202–210 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was supported by National Science Foundation Grants No. MCS77-23289 and MCS-8004231. Part of this work was performed under the auspices of the U.S. Department of Energy while in residence at the Applied Mathematics Division of Argonne National Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, R. Some models of error in floating point multiplication. Computing 27, 227–236 (1981). https://doi.org/10.1007/BF02237980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02237980

Keywords