Abstract
One of the standard methods for computing Cauchy principal value integrals is to subtract the singularity, and then to apply a given quadrature formula. This results in a quadrature formula for the Cauchy principal value integral which is called a modified quadrature formula. Here, we consider the case that this given quadrature formula is a compound quadrature formula, and derive error estimates of the form |R[f]| ≤κ i ∥f (i)∥∞ (whereR[f] is the error of the modified quadrature formula). In contrast to previous estimates, the behaviour ofκ i when the number of quadrature nodes tends to infinity is determined exactly.
Zusammenfassung
Eine der Standardmethoden zur Berechnung Cauchyscher Hauptwerte ist es, zunächst die Singularität herauszuziehen und dann eine gegebene Quadraturformel anzuwenden. Die daraus resultierende Quadraturformel für das Cauchysche Hauptwert-Integral wird als modifizierte Quadraturformel bezeichnet. In dieser Arbeit wird der Fall betrachtet, daß die gegebene Quadraturformel eine zusammengesetzte Quadraturformel ist, und es werden Fehlerabschätzungen der Form |R[f]| ≤κ i ∥f (i)∥∞ hergeleitet (wobeiR[f] der Fehler der modifizierten Quadraturformel ist). Im Gegensatz zu früheren Abschätzungen wird das Verhalten vonκ i für den Fall, daß die Anzahl der Stützstellen gegen Unendlich geht, exakt bestimmt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anselone, P. M.: Singularity subtraction in the numerical solution of integral equations. J. Aust. Math. Soc. (Ser. B)22, 408–418 (1981).
Braß, H., Schmeißer, G.: Error estimates for interpolatory quadrature formulae. Numer. Math.37, 371–386 (1981).
Calió, F., Marchetti, E.: Complex Gauss-Kronrod integration rules for certain Cauchy principal value integrals. Computing50, 165–173 (1993).
Davis, Ph, J., Rabinowitz, Ph.: Methods of numerical integration. Orlando: Academic Press 1984.
Diethelm, K.: Error estimates for a quadrature rule for Cauchy principal value integrals. Proc. Symp. Appl. Math.48, 287–291 (1994).
Diethelm, K.: Modified compound quadrature rules for strongly singular integrals. Computing52, 337–354 (1994).
Diethelm, K.: Modified interpolatory quadrature rules for Cauchy principal value integrals. Hildesheimer Informatikberichte 1/94.
Köhler, P.: A reduction method for linear functionals and its applications. Submitted for publication.
Köhler, P.: On the error of quadrature formulae for Cauchy principal value integrals based on piecewise interpolation. In preparation.
Monegato, G.: The numerical evaluation of one-dimensional Cauchy principal value integrals. Computing29, 337–354 (1982).
Noble, B., Beighton, S.: Error estimates for three methods of evaluating Cauchy principal value integrals. J. Inst. Math. Appl.26, 431–446 (1980).
Saranen, J., Schroderus, L.: The modified quadrature method for classical pseudodifferential equations of negative order on smooth closed curves. J. Comp. Appl. Math.50, 485–495 (1994).
Stolle, H. W., Strauß, R.: On the numerical integration of certain singular integrals. Computing48, 177–189 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Köhler, P. Asymptotically sharp error estimates for modified compound quadrature formulae for Cauchy principal value integrals. Computing 55, 255–269 (1995). https://doi.org/10.1007/BF02238435
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02238435