Skip to main content
Log in

A robust adaptive strategy for the nonlinear Poisson equation

Ein robustes adaptives Verfahren für die nichtlineare Poissongleichung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Our goal is to develop adaptive strategies in order to obtain finite element solutions of the partial differential equation-Δu=f(u) in a bounded domain Ω ⊆ ℝ2. In practice one works with an approximationf h off. But this may give wrong results if we do not control the coresponding approximation error on coarse girds. In this work we develop a strategy that is robust, but less efficient, in the beginning of the adaptive algorithm and switches to a more efficient procedure if certainsaturation conditions are satisfied. The results are based on a posteriori saturation criterial that measure the quality of the approximation solution.

Zusammenfassung

Wir entwickeln adaptive Methoden zur Berechnung von Finite Elemente-Lösungen der Partiellen Differentialgleichung −Δu=f(u) auf einem beschränktem Gebiet Ω ⊆ ℝ2. In der Praxis arbeitet man mit einer Approximationf h vonf, was zu falschen Ergebnissen führen kann, wenn man den zugehörigen Approximationsfehler auf dem groben Gitter nicht mitberücksichtigt. Wir verwenden eine Strategie, die zu Beginn der Iteration robust aber weniger effizient ist und gehen zu effektiveren Methoden über, falls gewisse Sättigungsbedingungen erfühlt sind. Dazu leiten wir a posteriori Fehlerschranken und a posteriori Sättigungsbedingungen her, um die Qualität der numerischen Lösung zu beurteilen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A.: Sobolev spaces. New York: Academic Press, 1975.

    Google Scholar 

  2. Bank, R.: A posteriori error estimates bases on hierarchical basis. SIAM J. Numer. Anal.30, 921–935 (1993).

    Article  Google Scholar 

  3. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng.3, 181–191 (1991).

    Article  Google Scholar 

  4. Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam. North-Holland, 1979.

    Google Scholar 

  5. Clément, P.: Approximation by finite element functions using local regularizations. RAIRO Anal. Numér.2, 77–84 (1975).

    Google Scholar 

  6. Dörfler W.: A convergent adaptive algorithms for Poisson's equation. To appear in SIAM 3. Numer. Anal. (1996).

  7. Grossmann, C., Roos, H. G.: Feedback-grid generation via monotone discretization for two-point boundary-value problems. IMA J. Numer. Ana.6, 421–432 (1986).

    Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic partial differential equation of second order. Berlin, Heidelberg, New York: Springer, 1977.

    Google Scholar 

  9. Ishihara, K.: Monotone explicit iterations of the finite element approximation for the nonlinear boundary value problem. Numer. Math.43, 419–437 (1984).

    Article  Google Scholar 

  10. Johnson, C.: Adaptive finite-element methods for diffusion and convection problems. Comput. Meth. Appl. Mech. Eng.82, 301–322 (1990).

    Article  Google Scholar 

  11. Kardestuncer, H., Norre, D. H. (eds.); Finite element handbook. New York: McGraw-Hill, 1987.

    Google Scholar 

  12. Kufner, A., Sändig, A. M.: Some applications of weighted Sobolev spaces., Leipzig: Teubner, 1987.

    Google Scholar 

  13. Spanier, J., Maize, E. H.: Quasi-random methods for estimating integrals using relatively small samples. SIAM Rev.36, 18–44 (1944).

    Article  Google Scholar 

  14. Verfürfth, R.: A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp.62, 445–475 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörfler, W. A robust adaptive strategy for the nonlinear Poisson equation. Computing 55, 289–304 (1995). https://doi.org/10.1007/BF02238484

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238484

AMS Subject Classifications

Key words

Navigation