Skip to main content
Log in

On a numerical Liapunov-Schmidt method for operator equations

Ein numerisches Liapunov-Schmidt-Verfahren für Operatorgleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Let, for a higher singular pointx 0 of an operator equationG(x 0)=0 and the kernels of the respective derivativesG′(x 0) andG′(x 0)*, see [1], approximations be available. We present a method to numerically compute the manifolds bifurcating atx 0. In particular, the question of convergence of the numerical to the exact solution is studied by proving stability and convergence for solution parts of different order of magnitude. Different approaches are presented and applied to elliptic problems.

Zusammenfassung

Für einen höheren singulären Punktx 0 einer OperatorgleichungG(x 0)=0 und die Nullräume der jeweiligen AbleitungenG′(x 0) undG′(x 0)*, siehe [1], seien Approximatioinen bekannt. Dann definieren wir ein numerisches Verfahren zur Berechnung der inx 0 abzweigenden Lösungsmannigfaltigkeiten. Die Frage der Konvergenz der numerischen gegen die exakte Lösung wird studiert durch Nachweis der entsprechenden Stabilitäts- und Konvergenzeigenschaften von Lösungsanteilen verschiedener Größenordnungen. Das Verfahren wird angewandt auf ein elliptisches Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E., Böhmer, K.: Resolving singular nonlinear equations. Rocky Mountain Journal of Mathematics,18, 225–268 (1988).

    Google Scholar 

  2. Allgower, E., Böhmer, K., Georg, K., Miranda, R.: Exploiting symmetry in boundary element methods. SIAM J. Numer. Anal.29, 534–552 (1991).

    Google Scholar 

  3. Allgower, E., Böhmer, K., Golubitsky, M. (eds.): Symmetry and bifurcations: cross influences between mathematics and applications (Marburg, 1991), ISNM. Basel, Boston: Birkhäuser 1992.

    Google Scholar 

  4. Allgower, E., Böhmer, K., Hoy, A., Janovsky, V.: Newton-like methods for singular points of nonlinear systems (in preparation).

  5. Allgower, E., Böhmer, K., Mei, Z.: On new bifurcation results for semilinear elliptic equations with symmetries. In: Whiteman, J. R. (ed.) The mathematics of finite elements and applications VII, pp 487–494. London New York: Academic Press 1991.

    Google Scholar 

  6. Allgower, E., Böhmer, K., Mei, Z.: A complete bifurcation scenario for the 2d-nonlinear Laplacian with Neumann boundary conditions on the unit square. In: Seydel, R., Schneider, F. W., Küpper, T., Troger, H. (eds.) Bifurcation and chaos: analysis, algorithms, applications, ISNM 97, pp. 1–18. Basel: Birkhäuser 1991.

    Google Scholar 

  7. Allgower, E., Böhmer, K., Mei, Z.: On a problem decomposition for semilinear nearly symmetric ellipic problems. In: Hackbusch, W. (ed.) Parallel algorithms for partial differnetial equations, pp. 1–17. Braunschweig: Vieweg 1991.

    Google Scholar 

  8. Allgower, E., Böhmer, K., Mei, Z.: Branch switching at a corank-4 bifurcation point of semi-linear elliptic problems with symmetry. IMA J. Numer. Anal., 1992 (to appear).

  9. Allgower, E. L., Böhmer, K., Mei, Z.: An extended equivariant branching theory. Math. Meth. Appl. Sci., 1992 (to appear).

  10. Allgower, E. L., Böhmer, K., Potra, Rheinboldt: A mesh independence principle for operator equations and their discretisations. SIAM J. Numer. Anal.23, 160–169 (1986).

    Google Scholar 

  11. Allgower, E., Chien, C.-S.: Continuation and local perturbation for multiple bifurcations. SIAM J. Sci. Statist. Comput.7, 1265–1281 (1986).

    Google Scholar 

  12. Allgower, E., Georg, K.: Numerical continuation methods, an introduction. Berlin, Heidelberg, New York, Tokyo: Springer 1990.

    Google Scholar 

  13. Ashwin, P., Böhmer, K., Mei, Z.: A numerical Liapunov-Schmidt method with apoplications to Hopf bifurcation on a square. Math. Comp. 1994 (to appear).

  14. Berger, M. S.: A Sturm-Liouville theorem for nonlinear elliptic partial differential equations. Ann. Scuola di Pisa20, 543–582 (1966).

    Google Scholar 

  15. Berger, M. S.: On nonlinear perturbations for the eigenvalues of a comact self-adjoint operator. Bull. A.M.S.73, 704–708 (1967).

    Google Scholar 

  16. Beyn, W.-J.: Zur numerischen Berechnung mehrfacher Verzweigungspunkte. ZAMM65, T 370–371 (1985).

    Google Scholar 

  17. Beyn, W.-J.: Defining equations for singular solutions and numerical applicattions. In: Küpper, T., Mittelmann, H. D., Weber, H. (eds.) Numerical methods for bifurcation problems, pp. 42–56. Boston, MA: Birkhäuser 1984).

    Google Scholar 

  18. Böhmer, K.: On a numerical Liapunov-Schmidt-method for operator equations. Bericht Nr.2 Fachbereich Mathematik, Philipps-Universität Marburg (1989), revised (1993).

  19. Böhmer, K., Mei, Z.: On a numerical Lyapunov-Schmidt method. In: Allgower, E., Georg, K. (eds.) Computational solution of nonlinear systems of equations. (Lectures in Applied Mathematics,26, 79–98, AMS, Providence 1990).

    Google Scholar 

  20. Böhmer, K., Mei, Z.: Mode interactions of an elliptic system on the square. In: Allgower, E., Böhmer, K., Golubitsky, M. (eds.) Symmetry and bifurcation. ISNM. Basel, Boston: Birkhäuser 1992.

    Google Scholar 

  21. Böhmer, K., Mei, Z.: Regularisation and computation of a bifurcation problem with corank 2. Computing41, 307–316 (1989).

    Google Scholar 

  22. Brezzi, F., Rappaz, I., Raviart, P. A.: Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsignular solutions. Numer. Math.36, 1–25 (1980), Part II: Limit points, Numer. Math.37, 1–28 (1981), Part III, simple bifurcation points, Numer. Math.38, 1–30 (1981).

    Google Scholar 

  23. Budden, P., Norbury, J.: Solution branches for nonlinear equilibrium problems—bifurcation and domain perturbations. IMA J. Appl. Math.28, 109–129 (1982).

    Google Scholar 

  24. Chui, C. K.: Multivariate splines. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM 1988.

  25. Chui, C. K., Schumaker, L. L., Ward, J. D.: Approximation theory IV, Proceedings International Symposium at Texas A.a.M. University, Academic Press (1983).

  26. Crouzeix, M., Rappaz, J.: On numerical approximation in bifurcation theory. Paris: Masson and Berlin: Springer 1990.

    Google Scholar 

  27. Dahmen, W.: Konstruktion mehrdimensionaler B-S-lines und ihre Anwendung auf Approximationsprobleme. ISNM52, 84–100 (1980).

    Google Scholar 

  28. Dahmen, W., Micchelli, C. A.: Recent progress in multivariate splines in [9], Allgower, E. L., Böhmer, K., Mei, Z.: An extended equivariant branching theory. Math. Meth. Appl. Sci., 1992 (to appear). 21–121.

  29. Decker, D. W., Keller, H. B.: Path following near bifurcation. Comm. Pure Appl. Math.34, 149–175 (1981).

    Google Scholar 

  30. Esser, H.: Stabilitätsungleichungen für Diskretisierungen von Randwertaufgaben gewöhnlicher Differentialgleichungen. Numer. Math.28, 69–100 (1977).

    Google Scholar 

  31. Georg, K.: A numerically stable update for simplicial algorithms. In: Allgower, E., Glashoff, K., Peitgen H.-O. (eds.) Numerical solution of nonlinear equations, pp. 117–127. (Lecture Notes in Math. 878) Berlin, Heidelberg, New York: Springer 1981.

    Google Scholar 

  32. Georg, K.: On tracing an implicitly defined curve by quasi-Newton steps and calculating bifurcation by local perturbation. SIAM J. Sci. Statist. Comput.2, 35–50 (1981).

    Google Scholar 

  33. Golubitsky, M., Schaeffer, D. G.: Singularities and group theory in bifurcation theory, Vol. I. Berlin, Heidelberg, New York, Tokyo: Springer 1985.

    Google Scholar 

  34. Golubitsky, M., Stuart, I., Schaeffer, D. G.: Singularities and groups in bifurcation theory, vol. II. Berlin, Heidelberg, New York, Tokyo: Sprigner 1988.

    Google Scholar 

  35. Griewank, A., Reddien, G. W.: Characterization and computation of generalized turning points. SIAM J. Numer. Anal.21, 176–185 (1984).

    Google Scholar 

  36. Grigorieff, R. D.: Zur Theorie linearer appromationsregulärer Operatoren, I und II. Math. Nachr.55, 233–249 and 251–263 (1973).

    Google Scholar 

  37. Hackbusch, W.: Multigrid methods and applications. Berlin, Heidelberg, New York: Springer 1985.

    Google Scholar 

  38. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Stuttgart: Teubner 1986.

    Google Scholar 

  39. Jepson, A. D., Spence, A.: The numerical solution of nonlinear equations having several parameters. Part I: Scalar equations. SIAM J. Numer. Anal.22, 347–368 (1985).

    Google Scholar 

  40. Jepson, A. D., Spence, A.: Singular points and their computation. In: Küpper, T., Mittelmann, H. D., Weber, H. (eds.) Numerical methods for bifurcation problems, pp. 195–209. Boston: Birkhäuser (1984).

    Google Scholar 

  41. Keener, J. P., Keller, H. B.: Perturbed bifurcation theory. Arch. Rational Mech. Anal.50, 159–175 (1974).

    Google Scholar 

  42. Keller, H. B.: The bordering algorithm and path following near singular points of higher nullity. SIAM J. Sci. Statist. Comput.4, 573–584 (1983).

    Google Scholar 

  43. Keller, H. B., Langford, W. F.: Iterations, perturbations and multiplicities for nonlinear bifurcation problems. Arch. Rational Mech. Anal.48, 83–108 (1972).

    Google Scholar 

  44. Knightly, G., Sather, D.: On nonuniqueness of solutions of the von Karman equations. Arch. Rat. Mech. Anal.36, 65–78 (1970).

    Google Scholar 

  45. Kuttler, J., Sigillito, V. G.: Eigenvalues of the Laplacian in two dimensions. SIAM Rev.26, 163–183 (1984).

    Google Scholar 

  46. Mei, Z.: Numerical approximations of simple corank-2 bifurcation problems. Dissertation, Universität Marburg, Fachbereich Mathematik (1989).

  47. Mei, Z.: Path following around corank-2 bifurcation points of a semilinear elliptic problem with symmetry. Computing46, 492–509 (1991).

    Google Scholar 

  48. Mei, Z.: Bifurcations of a simplified buckling problem and the effect of discretisations. Manuscripta Math.71, 225–252 (1991).

    Google Scholar 

  49. Micchelli, C. A.: Smooth multivariate piecewise polynomials: a method for computing multivariate B-splines, Public. Serie III, 187, Instituto per le Applicazione del Calcolo “Mauro Picone” (IAC), Rome, 1979.

    Google Scholar 

  50. Peitgen, H.-O.: Topologische Perturbationen beim globalen numerischen Studium nichtlinearer Eigenwert-und Verzweigungsprobleme. In: Jahresbericht des Deutschen Mathematichen Vereins84, 107–162 (1992).

  51. Rabier, P. J., Reddien, G. W.: Characterization and computation of singular points with maximum rank deficiency. SIAM J. Numer. Anal.23, 1040–1051 (1986).

    Google Scholar 

  52. Reinhard, H. J.: Analysis of approximation methods for differential and integral equations. Berlin, Heidelberg, New York, Tokyo: Springer 1985.

    Google Scholar 

  53. Sather, D.: Branching of solutions of an equation in Hilbert space. Arch. Rat. Med. Anal.36, 47–64 (1970).

    Google Scholar 

  54. Schultz, H. M.: Spline analysis. Englewood Cliffs: Prentice Hall 1973.

    Google Scholar 

  55. Skeel, R.: A theoretical framework for proving accuracy resuslts for deferred corrections. SIAM J. Numer. Anal.19, 171–196 (1982).

    Google Scholar 

  56. Spence, A., Werner, B.: Non-simple turning points an cusps. IMA J. Numer. Anal.2, 413–427 (1982).

    Google Scholar 

  57. Stakgold, I.: Branching of solutions of nonlinear equations. SIAM Review13, 289–332 (1971).

    Google Scholar 

  58. Stetter, H.: Analysis of discretisation methods for ordinary differential equations. Berlin, Heidelberg, New York: Springer 1973.

    Google Scholar 

  59. Stummel, F.: Diskrete Konvergenz linearer Operatoren, I. Math. Ann.190, 45–92 (1970). II. Math. Z.120, 231–264 (1971), III. Proc. Oberfach 1971, ISNM20, 196–216 (1972).

    Google Scholar 

  60. Stummel, F.: Stability and discrete convergence of differentiable mappings. Rev. Roum. Math. Pures e. Appl.21, 63–96 (1976).

    Google Scholar 

  61. Swartz, B. K., Varga, R. S.: Error bounds for spline and L-spline interpolation. J. Approx. Theory6, 6–49 (1972).

    Google Scholar 

  62. Vainikko, G.: Funktionsanalysis der Diskretisierungsmethoden. Teubner Texte zur Mathematik. Leipzig: Teubner 1976.

    Google Scholar 

  63. Vanderbauwhede, A.: Local bifurcation and symmetry. Research Notes in Mathematics,75, Boston: Pitmann 1982.

    Google Scholar 

  64. Weber, H.: Zur Verzweigung bei einfachen Eigenwerten. Manuscripta Math.38, 77–86 (1982).

    Google Scholar 

  65. Yosida, K.: Functional analysis. Berlin, Heidelberg, New York: Springer 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Hans Stetter on the occasion of his 63rd birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhmer, K. On a numerical Liapunov-Schmidt method for operator equations. Computing 51, 237–269 (1993). https://doi.org/10.1007/BF02238535

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238535

AMS Subject Classification

Key words

Navigation