Abstract
We describe a method for computing solutions of multi-point boundary value problems, where the polychotomic structure of the underlying solution space is specifically exploited. After the system is integrated in a multiple shooting way, the resulting linear system is solved by a special decoupling algorithm that takes into account the fact that the dichotomy on each interval is potentially different (in contrast to the two point case). A number of examples sustains the theory.
Zusammenfassung
Wir beschreiben ein Verfahren zur Berechnung von Lösungen von Mehrpunkt-Randwertproblemen, wobei die Unterteilungsstruktur des Lösungsraumes speziell ausgenützt wird. Nach der Integration des Systems mit Hilfe der Mehrziel-Methode wird das entstandene lineare Gleichungssystem mit einem speziellen Entkopplungs-Algorithmus gelöst, der berücksichtigt, daß die Randbedingungen für jedes Teilintervall verschiedenartig sein können (im Gegensatz zum Zweipunkt-Fall). Die Theorie wird durch einige Beispiele bestätigt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agarwal, R. P.: The numerical solution of multi-point boundary value problems. J. Comp. Appl. Math.5, 17–24 (1979).
Frisch-Fay, R.: Flexible Bars. London: Butterworths 1962.
de Hoog, F. R., Mattheij, R. M. M.: On dichotomy and well conditioning in BVP. SIAM J. Numer. Anal.24, No. 1 (1987).
de Hoog, F. R., Mattheij, R. M. M.: On the conditioning of multipoint and integral boundary problems, submitted for publication.
Mattheij, R. M. M.: Decoupling and stability of algorithms for boundary value problems. SIAM Review27, 1–44 (1985).
Mattheij, R. M. M., Staarink, G. W. M.: On optimal shooting intervals. Math. Comp.42, 25–40 (1984).
Mattheij, R. M. M., Staarink, G. W. M.: An efficient algorithm for solving general linear two point BVP. SIAM J. Sci. Stat. Comp.5, 745–763 (1984).
Welsh, W., Ojika, T.: Multipoint boundary value problems with discontinuities, I. Algorithms and applications. J. Comp. Appl. Math.6, 133–143 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
de Hoog, F.R., Mattheij, R.M.M. An algorithm for solving multi-point boundary value problems. Computing 38, 219–234 (1987). https://doi.org/10.1007/BF02240097
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02240097