Abstract
A necessary and sufficient criterion is presented under which the property of positivity carry over from the data set to rational quadratic spline interpolants. The criterion can always be satisfied if the occuring parameters are properly chosen.
Zusammenfassung
Unter positiver Interpolation wird die Aufgabenstellung verstanden, zur einer nichtnegativen Datenmenge nichtnegative Interpolierende zu konstruieren. Im Fallen rational-quadratischer Splines wird eine notwendige und hinreichende Bedingung für die Durchführbarkeit positiver Interpolation hergeleitet, und es wird gezeigt, daß diese sich bei passender Wahl der vorkommenden Parameter stets erfüllen läßt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Burmeister, W., Heß, W., Schmidt, J. W.: Convex spline interpolants with minimal curvature. Computing35, 219–229 (1985).
Delbourgo, R., Gregory, J. A.:C 2 rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal.3, 141–152 (1983).
Fritsch, F. N., Carlson, R. E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal.17, 238–246 (1980).
Gregory, J. A.: Shape preserving spline interpolation. Computer-aided design18, 53–57 (1986).
Miroshnickeno, V. L.: Convex and monotone spline interpolation. Proceed. Constr. Theory of Funct., Sofia84, 610–620 (1985).
Schmidt, J. W.: On shape preserving spline interpolation: existence theorems and determination of optimal splines. Banach Center Publ. XXVII (to appear), TU Preprint 07-0187 (1987).
Schmidt, J. W., Heß, W.: Quadratic and related exponential splines in shape preserving interplation. J. Comput. Appl. Math.15 (1987).
Schmidt, J. W., Heß, W.: Positivity of polynomials on intervals and positive spline interpolaton. BIT (submitted).
Späth, H.: Spline-Algorithmen zur konstruktion glatter Kurven und Flächen. München-Wien: R. Oldenbourg-Verlag, 3. Aufl. 1983.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schmidt, J.W., Heß, W. Positive interpolation with rational quadratic splines. Computing 38, 261–267 (1987). https://doi.org/10.1007/BF02240100
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02240100