Abstract
A grid strategy is developed via the first step of a defect correction applied to the Kreiss method. The full defect corrections are used on the final grid to compute high accuracy approximations efficiently.
Zusammenfassung
Der erste Schriff eines Defektkorrekturverfahrens angewandt auf das Kreiss-Verfahren ermöglicht eine Gitterstrategie. Das vollständige Defektkorrekturverfahren wird auf dem Endgitter zur effizienten Berechnung von Approximationen hoher Genauigkeit herangezogen.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Böhmer, K.: Discrete methods and iterated defect corrections. Numer. Math.37, 167–192 (1981).
Böhmer, K., Hamker, P., Stetter, H. J.: The defect correction approach. in Defect correction methods, theory and applications. Springer-Verlag Wien, New York, Comp. Suppl.5, 1985, 1–32.
Böhmer, K., Römer, Th.: Discrete Newton Method and Grid Strategy for the Kreiss Method for Stiff Boundary Value Problems, 1985.
Böhmer, K., Stetter, H. J.: Defect correction methods, theory and applications. Springer-Verlag Wien, New York, Comp. Suppl.5, 1984.
Brown, D. L.: A numerical method for singular perturbation problems with turning points, to appear in proceedings of 1984 Vancouver two-point boundary value conference. Birkhäuser 1985.
Kreiss, B., Kreiss, H. O.: Numerical methods for singular perturbation problems. SIAM J. Numer. Anal.18, 262–276 (1981).
Kreiss, H.-O., Nichols, N. K., Brown, D. L.: Numerical methods for stiff two-point boundary value problems, Applied Mathematics, California Institute of technology, Pasadena, California, to appear in SIAM J. Number. Anal.
Pearson, C. E.: On a differential equation of boundary layer type. J. Math. Phys.47, 134–154 (1968).
Römer, Th.: Schrittweitenstrategien für steife Randwertprobleme, insbesondere Turning-point-Probleme. MA Thesis, University of Marburg, 1984.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Böhmer, K., Römer, T. Grid strategy and high accuracy via defect corrections for the Kreiss-method for stiff boundary value problems. Computing 38, 269–273 (1987). https://doi.org/10.1007/BF02240101
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02240101