Abstract
Using the “bisection rule” of Moore, a simple algorithm is given which is an interval version of Shubert's iterative method for seeking the global maximum of a function of a single variable defined on a closed interval [a, b]. The algorithm which is always convergent can be easily extended to the higher dimensional case. It seems much simpler than and produces results comparable to that proposed by Shubert and Basso.
Zusammenfassung
Unter Verwendung der “Bisektionsregel” von Moore wird ein Algorithmus angegeben, der eine Intervallversion der iterativen Methode von Shubert zur Bestimmung des globalen Maximums einer Funktion einer Veränderlichen auf den abgeschlossenen Intervall [a, b] darstellt. Der Algorithmus konvergiert immer; er kann leicht auf den höherdimensionalen Fall ausgedehnt werden. Er erscheint viel einfacher als der Algorithmus von Shubert und Basso, ergibt aber vergleichbare Ergebnisse.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Asaithambi, N. S., Shen, Z., Moore, R. E.: On computing the range of values. Computing28, 225–237 (1982).
Basso, P: Iterative methods for the localization of the maximum. SIAM J. Number. Anal.19, 781–792 (1982).
Hansen, E.: Global optimization using interval analysis — a the one-dimensional case. J. Optim. Theory Appl.29, 331–344 (1979).
Hansen, E.: Global optimization using interval analysis — the multi-dimensional case. Numer. Math.34, 247–270 (1980).
Moore, R. E.: Methods and applications of interval analysis. SIAM Philadelphia, 1979.
Ratschek, H.: Inclusion functions and global optimization. Mathematical Programming, to appear (1985).
Shubert, B. O.: A sequential method seeking the global maximum of a function. SIAM J. Number. Anal.9, 379–388 (1972).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Shen, Z., Zhu, Y. An interval version of Shubert's iterative method for the localization of the global maximum. Computing 38, 275–280 (1987). https://doi.org/10.1007/BF02240102
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02240102