Abstract
In the case of symmetric and positive definite plane elliptic boundary value problems, the condition numbers of the stiffness matrices arising from finite element discretizations grow only quadratically with the number of refinement levels, if one uses hierarchical bases of the finite element spaces instead of the usual nodal bases; see [9]. Here we show that results of the same type hold for nonsymmetric problems and we describe the interesting consequences for the solution of the discretized problems by Krylov-space methods.
Zusammenfassung
Im Fall positiv definiter und symmetrischer ebener elliptischer Randwertprobleme wachsen die Konditionszahlen der Steifigkeitsmatrizen, die man bei der Diskretisierung solcher Probleme mit der Methode der finiten Elemente erhält, nur quadratisch mit der Anzahl der Verfeinerungsstufen, wenn man die üblichen Knotenbasen der Finite-Element-Räume durch hierarchische Basen ersetzt; siehe [9]. In dieser Arbeit zeigen wir, daß Ergebnisse gleichen Typs für nichtsymmetrische Probleme gelten, und wir beschreiben die interessanten Konsequenzen, die diese Resultate für die Lösung der diskretisierten Probleme mit Krylov-Raum-Methoden haben.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Axelsson, O.: Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations. Linear Algebra Appl.29, 1–16 (1980).
Eisenstat, St. C., Elman, H. C., Schultz, M. H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal.20, 345–357 (1983).
Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp.37, 105–126 (1981).
Saad, Y.: The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal.19, 485–506 (1982).
Saad, Y.: Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.5, 203–228 (1984).
Stoer, J.: Solution of large linear systems of equations by conjugate gradient type methods. In: Mathematical Programming, the State of the Art (Bachem, A., Grötschel, M., Korte, B., eds.). Berlin-Heidelberg-New York-Tokio: Springer 1983.
Vinsome, P. K. W.: Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In: Proc. Forth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, 149–159, 1976.
Young, D. M., Jea, K. C.: Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. Linear Algebra Appl.34, 159–194 (1980).
Yserentant, H.: On the multi-level splitting of finite element spaces. Bericht Nr. 21, Institut für Geometrie und Praktische Mathemtik der RWTH Aachen, 1983.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yserentant, H. Hierarchical bases of finite-element spaces in the discretization of nonsymmetric elliptic boundary value problems. Computing 35, 39–49 (1985). https://doi.org/10.1007/BF02240145
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02240145