Abstract
In this paper we present a Quasi-Newton type method, which applies to large and sparse nonlinear systems of equations, and uses the Q-R factorization of the approximate Jacobians. This method belongs to a more general class of algorithms for which we prove a local convergence theorem. Some numerical experiments seem to confirm that the new algorithm is reliable.
Zusammenfassung
Wir stellen in dieser Arbeit ein Verfahren vom Quasi-Newton-Typ für große, dünnbesetzte nichtlineare Gleichungssysteme vor, das die QR-Faktorisierung der näherungsweisen Jacobi-Matrix benutzt. Das Verfahren gehört zu einer allgemeinen Klasse von Algorithmen, für die wir die lokale Konvergenz beweisen. Einige numerische Experimente deuten auf die Verläßlichkeit des neuen Algorithmus hin.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput.19, 577–593 (1965).
Broyden, C. G., Dennis, J. E., Moré, J. J.: On the local and superlinear convergence of Quasi-Newton methods. J. Inst. Math. Appl.12, 223–245 (1973).
Chadee, F. F.: Sparse Quasi-Newton Methods and the Continuation Problem, T. R. SOL 85-8, Dept. of Operation Research, Stanford University (1985).
Dennis, J. E., Marwil, E. S.: Direct secant updates of matrix factorizations. Math. Comput.38, 459–476 (1982).
Dennis, J. E., Moré, J. J.: A characterization of superlinear convergence and its application to Q-N methods. Math. Comput.28, 549–560 (1974).
Dennis, J. E., Moré, J. J.: Quasi-Newton methods, motivation and theory. SIAM Rev.19, 46–89 (1977).
George, A., Heath, M. T.: Solution of sparse linear least squares problem using Givens rotations. Linear Algebra and its Applics34, 69–83 (1980).
George, A., Ng, E.: An implementation of Gaussian elimination with partial pivoting for sparse systems. SIAM J. Sci. Stat. Comput.6, 390–409 (1985).
Martínez, J. M.: A Quasi-Newton method with a new updating for the LDU factorization of the approximate Jacobian. Mat. Aplic. e Comput.2, 131–142 (1983).
Martínez, J. M.: A Quasi-Newton method with modification of one column per iteration. Computing33, 353–362 (1984).
Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.
Schmidt, J. W.: Überlinear konvergente Mehrschrittverfahren von Regula-falsi und Newton-Typ. ZAMM53, 103–104 (1973).
Schubert, L. K.: Modification of a Quasi-Newton method for nonlinear equations with a sparse Jacobian. Math. Comput.24, 27–30 (1970).
Schwetlick, H.: Über die Realisierung und Konvergenz von Mehrschrittverfahren zur iterativen Lösung nichtlinearer Gleichungen. ZAMM54, 479–493 (1974).
Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. Berlin: Deutscher Verlag der Wissenschaften, 1978.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Martínez, J.M. Quasi-Newton methods with factorization scaling for solving sparse nonlinear systems of equations. Computing 38, 133–141 (1987). https://doi.org/10.1007/BF02240178
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02240178