Abstract
An algorithm symbolically calculating the trace of the power of a tridiagonal matrix is proposed. The setting is based on techniques developed from structure analysis and combinatorics. The complexity analysis, the extension and the possible applications of this algorithm are also discussed.
Zusammenfassung
Es wird ein Algorithmus vorgeschlagen, der die Spur einer Potenz einer Tridiagonalmatrix berechnet. Er stützt sich auf Techniken, die aus der Strukturanalysis und der Kombinatorik stammen. Die Komplexität des Algorithmus wird analysiert, Verallgemeinerungen und mögliche Anwendungen werden diskutiert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Capel, H. W., Tindemans, P. A. J.: An inequality for the trace of matrix products Rep. Mathematical Phys.6, 225–235 (1974).
Datta, B. N., Datta, K.: An algorithm for computing powers of a Hessenberg matrix and its applications. Linear Alg. Appl.14, 273–284 (1976).
Davis, C.: An inequality for traces of matrix functions. Czechoslavak Math. J.15, 37–41 (1965).
Harary, T., Palmer, E.: Graphical Enumeration. New York: Academic Press 1973.
Khati, C. G.: Powers of matrices and idempotency. Linear Alg. Appl.33, 57–65 (1980).
Kristof, W.: A theorem on the trace of certain matrix products J. Math. Psychol.7, 515–530 (1970).
Leron, U.: Trace identities and polynomial identifies ofn×n matrices J. Alg.42, 369–377 (1976).
Mirsky, L.: On the trace of matrix products. Math. Nachr.20, 171–174 (1959).
Pugacev, V. P.: Application of the trace of a matrix to the evaluation of its proper values. Z. Vychisl. Mat. i Mat. Fiz.5, 114–116 (1965).
Rothblum, U. G.: Expansions of sums of matrix powers. SIAM Review23, 143–164 (1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chu, M.T. Symbolic calculation of the trace of the power of a tridiagonal matrix. Computing 35, 257–268 (1985). https://doi.org/10.1007/BF02240193
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02240193