Skip to main content
Log in

Nichtlineare Stabilität und Phasenuntersuchung adaptiver Nyström-Runge-Kutta-Methoden

Nonlinear stability and phase analysis for adaptive Nyström-Runge-Kutta methods

  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Für eine umfangreiche Klasse nichtlinearer steifer Differentialgleichungssysteme zweiter Ordnung wird die Stabilität adaptiver Nyström-Runge-Kutta-Verfahren untersucht. Wir zeigen, daß für eine große Klasse semidiskretisierter hyperbolischer und parabolischer Probleme die Restriktion der Schrittweite unabhängig von der Steifheit des Differentialgleichungssystems ist. Weiterhin verwenden wir die skalare Testgleichung\(y'' = - \omega ^2 y + q \cdot e^{iv(t - t_0 )} \) und geben Bedingungen dafür an, daß die numerische erzwungene Schwingung mit der analytischen erzwungenen Schwingung in Phase ist. Die Konsistenzordnung adaptiver Nyström-Runge-Kutta-Verfahren (mit einer Stabilitätsmatrix, die auf einer diagnolen Padé-Approximation beruht), für die die erzwungene Schwingung mit ihrem analytischen Gegenstück in Phase ist, kann nicht größer als zwei sein. Diese Ordnungsbarriere gilt nicht fürr-stufige implizite Nyström-Methoden der Ordnungp=2r.

Abstract

The stability of adaptive Nyström-Runge-Kutta procedures is studied for a wide class of nonlinear stiff systems of second order differential equations. We show that for a large class of semi-discrete hyperbolic and parabolic problems the restriction of the stepsize is not due to the stiffness of the differential equation. Furthermore we use the scalar test equation\(y'' = - \omega ^2 y + q \cdot e^{iv(t - t_0 )} \) to derive conditions which ensure that the numerical forced oscillation is in phase with the analytical forced oscillation. The order of adaptive Nyström-Runge-Kutta methods (with a stability-matrix based on a diagonal Padéapproximation) for which the forced oscillation is in phase with its analytical counterpart cannot be greater than two. This barrier of order is not true forr-stage implicit Nyström methods of orderp=2r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Chawla, M. M., Sharma, S. R.: Intervals of periodicity and absolute stability of explicit Nyström methods fory″=f(x,y). BIT21, 455–464 (1981).

    Article  Google Scholar 

  2. Gladwell, I., Thomas, R. M.: Damping and phase analysis for some methods for solving secondorder ordinary differential equations. Int. J. num. Meth. Engng.19, 495–503 (1983).

    Article  Google Scholar 

  3. Hairer, E.: Unconditionally stable methods for second order differential equations. Numer. Math.32, 373–379 (1979).

    Article  Google Scholar 

  4. Houwen, van der P. J.: Stabilized Runge-Kutta methods for second order differential equations without first derivatives. SIAM J. Numer. Anal.16, 523–537 (1979).

    Article  Google Scholar 

  5. Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math.37, 61–91 (1981).

    Article  Google Scholar 

  6. Jeltsch, R., Nevanlinna, O.: Stability of semidiscretizations of hyperbolic problems. RWTH Aachen, Inst. f. Geometrie u. Prakt. Math., Bericht Nr 16 (1982).

  7. Strehmel, K., Weiner, R.: Adaptive Nyström-Runge-Kutta-Methoden für gewohnliche Differentialgleichungssysteme zweiter Ordnung. Computing30, 35–47 (1983).

    Google Scholar 

  8. Kramarz, L.: Stability of collocation methods for the numerical solution ofy″=f(x, y). BIT20, 215–222 (1980).

    Article  Google Scholar 

  9. Thomas, R. M.: Phase properties of high order, almostP-stable formulae. BIT24, 225–238 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strehmel, K., Weiner, R. Nichtlineare Stabilität und Phasenuntersuchung adaptiver Nyström-Runge-Kutta-Methoden. Computing 35, 325–344 (1985). https://doi.org/10.1007/BF02240198

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02240198

AMS Subject Classification

Key words