Skip to main content
Log in

The AOR method for solving linear interval equations

Das AOR-Verfahren zur Lösung von linearen Intervallgleichungen

  • Short Communication
  • Published:
Computing Aims and scope Submit manuscript

Abstract

This paper is motivated by the paper [7], where the SOR method for solving linear interval equations was considered. It is known that sometimes the AOR method for systems of linear (“point”) equations converges faster than the SOR method. We give some sufficient conditions for the convergence of the interval AOR method for the same class of interval matrices which are considered in [7].

Zusammenfassung

Diese Arbeit ist durch die Arbeit [7] motiviert, wo das SOR-Verfahren zur Lösung von linearen Intervallgleichungen betrachtet wird. Es ist bekannt, daß das AOR-Verfahren für lineare (“Punkt”) Gleichungssysteme manchmal schneller als das SOR-Verfahren konvergiert. Wir geben einige hinreichende Konvergenzbedingungen für das Intervall-AOR-Verfahren für dieselbe Klasse von Matrizen, die in [7] betrachtet wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cvetković, Lj.: On the nonsingularity of interval matrices. In: Conference on Applied Mathematics (Bohte, Z., ed.), pp. 27–32. Ljubljana: University of Ljubjana, Institute of Mathematics, Physics and Mechanics 1986.

    Google Scholar 

  2. Cvetković, Lj., Herceg, D.: Convergence theory for AOR method. Journal of Computational Mathematics (to appear).

  3. Cvetković, Lj., Herceg, D.: An improvement for the area of convergence of the AOR method. Anal. Numer. Theor. Approx.16, 109–115 (1987).

    Google Scholar 

  4. Hadjidimos, A.: Accelerated overrelaxation method. Math. Comp.32, 149–157 (1978).

    Google Scholar 

  5. Neumaier, A.: New techniques for the analysis of linear interval equations. Linear Algebra and its Applications58, 273–325 (1984).

    Google Scholar 

  6. Neumaier, A.: Further results on linear interval equations. Freiburger Intervall-Berichte85/4, 37–72 (1985).

    Google Scholar 

  7. Qingrong, L., Zhiying, J.: The SOR method for solving linear interval equations. Freiburger Interval-Berichte87/7, 1–7 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partly supported by NSF and SIZ for Science of SAP Vojvodina through funds made available to the U.S.-Yugoslav Joint Board on Scientific and Technological Cooperation (grant JF 799).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvetković, L., Herceg, D. The AOR method for solving linear interval equations. Computing 41, 359–364 (1989). https://doi.org/10.1007/BF02241224

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241224

AMS Subject Classifications

Key words

Navigation