Abstract
The dependence of a best approximation on the domain of definition has not been studied so far for problems involving approximations by non-Chebychev spaces. Two simple examples are given which show that the approximation problem may not be well-conditioned (not even continuous) in this case. The examples also suggest that by a slight modification in the formulation of the problem the inherent ill-conditioning can be eliminated. This leads to the consideration of best ε-approximations.
Zusammenfassung
Die Abhängigkeit einer besten Approximierenden vom Definitionsbereich für Approximationen durch nicht-Chebychev Räume scheint bis jetzt nicht untersucht worden zu sein. Es werden zwei einfache Beispiele gegeben, die zeigen, daß in diesem Fall das Approximationsproblem, im allgemeinen, nicht gut konditioniert ist (nicht einmal stetig). Die Beispiele deuten an, wie man das Problem umformulieren kann, so daß die inhärente Unstetigkeit eliminiert wird. Dies führt zur Betrachtung von besten ε-Approximationen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cheney, E. W.: Introduction to Approximation Theory. McGraw-Hill. 1966.
Maehly, M. M., andC. Witzgall: Tschebyscheff-Approximation in kleinen Intervallen I. Approximation durch Polynome. Num. Math.2, 43–59 (1960).
Blatter, J., P. D. Morris, andD. E. Wulbert: Continuity of the Set-valued Metric Projection. Math. Annalen178, 12–24 (1968).
Singer, I.: Best Approximation in Normed Linear Spaces (Die Grundlehren der mathematischen Wissenschaften, Band 171). Berlin-Heidelberg-New York: Springer, 1970.
Kripke, B.: Best approximation with respect to Nearby Norms. Num. Math.6, 103–105 (1964).
Polya, G.: Sur un algorithm toujours convergent pour obtenir les polynomes de meilleure approximation. Compt. rend157, 840–843 (1913).
Fletcher, R., J. A. Grant, andM. D. Hebden: The calculation of linear bestL p approximations. Computer Journal14, 276–279 (1971).
Buck, R. C.: Applications of duality in approximation theory, in: Approximation of functions (Garebedian M. L., ed.), p. 27–42. Elsevier. 1965.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Riha, W. Continuity and condition of the linear approximation problem I. Computing 10, 359–364 (1972). https://doi.org/10.1007/BF02242247
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02242247